
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016 2537

Organizing Books and Authors by Multilayer SOM
Haijun Zhang, Member, IEEE, Tommy W. S. Chow, Senior Member, IEEE,

and Q. M. Jonathan Wu, Senior Member, IEEE

Abstract— This paper introduces a new framework for the
organization of electronic books (e-books) and their correspond-
ing authors using a multilayer self-organizing map (MLSOM).
An author is modeled by a rich tree-structured representa-
tion, and an MLSOM-based system is used as an efficient
solution to the organizational problem of structured data. The
tree-structured representation formulates author features in a
hierarchy of author biography, books, pages, and paragraphs.
To efficiently tackle the tree-structured representation, we used
an MLSOM algorithm that serves as a clustering technique
to handle e-books and their corresponding authors. A book
and author recommender system is then implemented using
the proposed framework. The effectiveness of our approach
was examined in a large-scale data set containing 3868 authors
along with the 10 500 e-books that they wrote. We also provided
visualization results of MLSOM for revealing the relevance pat-
terns hidden from presented author clusters. The experimental
results corroborate that the proposed method outperforms other
content-based models (e.g., rate adapting poisson, latent Dirichlet
allocation, probabilistic latent semantic indexing, and so on) and
offers a promising solution to book recommendation, author
recommendation, and visualization.

Index Terms— Author recommendation, book recommenda-
tion, content-based recommendation, self-organizing map (SOM),
tree structure.

I. INTRODUCTION

S INCE the handheld electronic book (e-book) reader device
was first launched in 2007 [1], the way people read

books has been undergoing a major change. Current e-readers
have the ability to store thousands of books, and are able
to receive book promotions via Wireless Fidelity from book
retailers; browsing of books in libraries and bookshops can be
replaced in some way by browsing e-readers. This evolution
has been so huge that we are witnessing hard print book
copies suffer from the most significant market drop, since
the printing press was invented by Guttenburg. In 2012, the
book retail giant, Amazon, announced that its e-book retail has
overtaken its conventional hard print sales; for every 100 hard
print books, they sold, 114 e-books were downloaded to

Manuscript received June 10, 2014; revised October 23, 2015; accepted
October 25, 2015. Date of publication November 13, 2015; date of current
version November 15, 2016. This work was supported in part by the Shenzhen
Foundation Research Fund under Grant JCYJ20150625142543464 and in part
by the National Natural Science Foundation of China under Grant 61300209
and Grant 61572156.

H. Zhang is with the Shenzhen Graduate School, Harbin Institute of
Technology, Shenzhen 518055, China (e-mail: hjzhang@hitsz.edu.cn).

T. W. S. Chow is with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong (e-mail: eetchow@cityu.edu.hk).

Q. M. J. Wu is with the Department of Electrical and Computer
Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada (e-mail:
jwu@uwindsor.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2015.2496281

Amazon e-book readers [2]. The way that people read may
have changed, but the experience that people obtain from
reading has remained the same. We still see fellow commuters
reading e-books using their e-readers or laptops around college
campuses, coffee shops, and on public transportation. Using
the Internet, e-readers can find all kinds of literature, ranging
from the best sellers by established authors, to cutting-edge
material by daring new authors, and everything in between.
As a result, book and author recommendations have become
essential to book sellers, book readers, and authors.

The widely employed techniques of recommender systems
work on collaborative filtering [3], [4] and content-based
recommendations [5]. Collaborative filtering relies on users’
own explicit and implicit preferences, the preferences of other
users, and the attributes of users and items. It assumes that
a given user’s preferences are similar to another user of the
system and that a sufficient number of user ratings are avail-
able. There are three issues that stand out as problematic in
collaborative filtering. First, items that have not been rated by a
sufficient number of users cannot be effectively recommended.
Second, a collaborative approach is not able to recommend
items that no one has yet rated or purchased; this is the
so-called cold-start problem. Third, statistics on library use
show that most books are utilized by very few patrons [6].
This leads to a sparsity problem with respect to the user rated
or historical purchase data. Content-based recommendations,
on the other hand, can help to overcome these issues by
inferring similarities between existing and new users, as well
as between existing and new items [7]. It recommends items
based on content features about the item itself rather than
on the preferences of other users. A content-based approach
was employed in one of the first book recommendation
systems [8], [9]. However, its system developer had to labo-
riously hand label each book with values for a preselected
set of features, and users had to provide specific traits about
themselves in addition to evaluating recommended books.
Other work to explore content-based book recommendation
was proposed to apply automated text-categorization methods
to semistructured text extracted from the Internet [10].
However, the content information considered in the proposed
system only consisted of textual metadata rather than the actual
text of the books themselves. Each book was represented as a
hybrid bags-of-words vector. The employed inductive learner
was a simple Bayesian classifier to handle the vector of the
bags. In the industry, e.g., Google Books, full-text indexing
has widely been used for book retrieval via search queries.

Apparently, when considering the full text of books, it is
straightforward to use the traditional bag-of-words model to
represent each book as a document vector. The similarities

2162-237X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2538 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

between books can be measured by the widely used cosine
distance. However, a book is usually a lengthy document,
which may cover most of the vocabulary that we use in our
daily lives. Therefore, in order to have a better understanding
of the semantics hidden within a book, capturing the
term spatial information in the book is critical. Traditional
document modeling methods, however, rely on the bag-of-
words models, such as the vector space model (VSM) [11],
the latent semantic indexing (LSI) [12], the probabilistic LSI
(PLSI) [13], the latent Dirichlet allocation (LDA) [14], and
the rate adapting poisson (RAP) model [38]. These methods
mainly consider the term frequency (tf) only. They use flat
feature representation through formulating a function of tf.
Apparently, this type of representation is only a document-
level description, because two documents containing similar
term frequencies can totally be contextually different when
the spatial distribution of the terms is different. For example,
school, computer, and science mean very different terms
when they appear in different parts of a document when
compared with the case of a school of computer science
that strings the words together. Thus, solely relying on the tf
information from the bag-of-words model is not a reliable way
to discriminate contextual similarity, because it can be rather
inaccurate when not considering the tf, word interconnections
and spatial distributions together for the whole book.

Document analysis considering term associations has been
studied by a few researchers. Graph matching-based methods
exist in the Web documents analysis [16]. This type of
approach is capable of delivering respectable accuracy par-
ticular when the documents are of small size. The graph
matching process, however, is rather computationally complex,
which is impractical when one requires to compare
two e-books that consist of a few hundreds of pages. Moreover,
Fuketa et al. [17] introduced a field understanding method
using field association words for document classification.
Others used either bigrams [18] or term association rules [19]
to improve the classification accuracy. In [21], we focused on
the multiple features (MFs) extraction schemes using different
word graphs. In later studies, a dual wing harmonium model
was developed to generate the latent representations of doc-
uments by modeling the MFs [15]. These methods, however,
only work on short documents, because extracting appropriate
field association words [17], bigrams [18], term association
rules [19], or Term Connection Frequency [15], [21] from e-
books requires large extra computational cost due to prominent
term spatial distributions within e-books. Meanwhile, a flexible
multilayer self-organizing map (MLSOM) [22] was developed
for handling unsupervised learning of generic tree-structured
data. More recently, it has been demonstrated that MLSOM
can be effectively used in document retrieval and plagiarism
detection [20].

Author recommendation is another important application
for online stores in e-book market. It helps people to make the
right choice of favorite authors together with their loved books.
With the collaborative filtering technique, Heck et al. [23]
developed an academic author recommendation system
by considering cocitation and bibliographic coupling.
Recently, Vaz et al. [24] introduced two item-based

collaborative filtering algorithms to predict books and authors
that a user will like. These two algorithms used only the
rating features of books and authors. They did not examine
the book content and author information (e.g., biography)
at all. In practice, many expert recommenders have been
designed mainly for business institutions. For example,
Petry et al. [25] developed an expert recommendation system,
Intelligent Context Awareness for Recommending Experts
(ICARE), which was used for recommending experts in an
organization. ICARE focused on author’s organizational level,
availability, and reputation, instead of author’s publications
and citations. In later study, Reichling and Wulf [26]
implemented a recommender system for a European industrial
association. Experts were defined according to their collection
of documents. However, these approaches still have major
shortcomings on privacy and data security in the Internet [23].

Inspired by the tree-structure representation [20], in this
paper, we developed a framework for the organization of
e-books and authors using a four-level tree representation
and MLSOM. The information of authors is hierarchically
organized into different layers of an MLSOM: 1) paragraphs
are organized at the bottom layer; 2) pages are organized at
the third layer; 3) e-books are organized at the second layer;
and 4) authors are organized at the top layer. Thus, author
information can be fully described by such a hierarchical
tree. Different layers play different roles: the top layer per-
forms author clustering, the second layer works on clustering
e-books, and the other two bottom layers are used to compress
local features of books. MLSOM is used as an efficient
solution to the clustering problem of these structured data.
Under the proposed framework, we implemented a book
and author recommender system. Due to a lack of public
e-book data sets for the purpose of book and author rec-
ommendation, we compiled a large-scale data set containing
3868 authors and 10 500 e-books. Our experimental results
show that the proposed approach outperforms other content-
based models, such as RAP [38], LDA [14], PLSI [13],
LSI [12], and VSM [11], and can be applicable for book
and author recommendation. It is worth pointing out that
collaborative filtering methods, as reported in [24], can be
incorporated into our proposed framework to predict a user’s
preference for books and authors in online applications.
In addition, popular e-readers work with very different formats
of e-books. In the industry, e-book providers can easily employ
our proposed methodology in their recommending system, but
they may need to adjust the hierarchy of the book representa-
tion according to their manufactured book formats.

The rest sections of this paper are organized as follows.
Section II presents the details of tree-structured author
feature representation. Section III presents the framework
of organizing books and authors using MLSOM. Book and
author recommender systems are implemented in Section IV.
Extensive experiments are conducted in Section V. Finally, the
conclusion is drawn in Section VI.

II. TREE-STRUCTURED AUTHOR REPRESENTATION

In this section, we first introduce the overall framework to
construct an author tree. The implementation details, such as

ZHANG et al.: ORGANIZING BOOKS AND AUTHORS BY MULTILAYER SOM 2539

Fig. 1. Author representation by tree-structured feature.

preprocessing, vocabulary construction, word histogram
formation, and feature projection, are then described.

A. Tree Structure

To fully describe the information of an author, we use a
tree structure to represent the feature of the author, as shown
in Fig. 1. The root node at the first level indicates the biog-
raphy of an author. It may include the birth date, nationality,
education history, political activities, and the early childhood
and the later life experiences of an author. The second-level
nodes represent books that the author has written. The
third-level nodes represent different pages that are partitioned
from the book. The bottom-level nodes represent paragraphs
of the pages. Thus, an author description is constructed as
author → books → pages → paragraphs tree. This is a
natural way of generating a tree structure. It can be further
improved using a form of author → books → chapters →
pages → paragraphs → sentences with respect to different
book segmentation strategies, but it will increase the computa-
tional burden substantially. For simplicity, in this paper, we use
the aforementioned four-level tree-structured representation for
each author.

Biographies of most authors can be easily found on online
Web sites. The root node at the top level contains word-
frequency features extracted from the author biography Web
page. Besides the root node, nodes at other levels include
the same word-frequency features, but they are extracted
from different domains of books. The rationale behind this
book segmentation is that two books that have similar word
histograms at the book level, i.e., the second layer can be
completely different in terms of semantics or context, because
different spatial distributions of the same set of words may
lead to different meanings. This can be reflected by the lower
parts of the tree, for instance, third- or fourth-level nodes.
To encode node features in the tree, word histograms are first
evaluated for the nodes at different levels. In order to make
the system computable, we apply the principal component
analysis (PCA) to the word histogram vector. Thus, the nodes
model the compressed PCA features that describe frequency
distribution of different words.

The above-described tree-structured representation is an
effective way to conduct content-based book and author
recommendation. For book recommendation, the similarity
between two books can be compared and measured using the
nodes at the second-to-fourth level. The second-level nodes

provide global similarity, and the third- and fourth-level nodes
give us local similarity. Likewise, for author recommendation,
the similarity between two authors can be evaluated using
the whole tree, where the root nodes give comparative results
between the authors with respect to their biographical intro-
ductions, and the children nodes at other levels provide the
similarity lying in their writings by capturing the local spatial
information of word distributions. As a result, a content-
based author recommender system can be implemented using
similarity measurements.

B. Implementation Details

Given an author, the overall implementation framework of a
tree-structured representation for the author is shown in Fig. 2.
First, the preprocessing, word extraction, vocabulary construc-
tion, and generation of a PCA projection matrix are performed.
Second, books are partitioned into pages that are further parti-
tioned into paragraphs, and then nodes’ features are computed
using the word histogram vectors. Third, features of nodes are
projected into lower dimensional PCA space, and a tree struc-
ture encoding different features is returned for each author.

1) Preprocessing: The biographies of all the authors we
used in this paper were collected from Wikipedia in the
.html format. Only the texts were extracted from the main
frame, and the contents of references, external links, and the
other information which are not related to the biography were
filtered out. In addition, the text appearing within the html
tags used for formatting was not accounted for in the word
count or the document feature extraction. The e-books used
in this paper were downloaded from Project Gutenberg.1 The
copyright information embedded in the text body was also
filtered out. After these preprocessing steps, words from all the
documents were extracted in the data set, and stemming was
subsequently applied to each word [37]. Stems are often used
as basic features instead of original words. Thus, program,
programs, and programming were all considered as the same
word. We removed the stop words, a set of common words,
such as a, the, and are, and then stored the stemmed words
together with the information of the tf, f t

u (the frequency
of the uth word in all the documents), and the document
frequency (df), and f d

u (the number of documents, the uth
word appears).

2) Vocabulary Construction: Forming a histogram vector
for each document requires the construction of a word
vocabulary that each histogram vector can refer to. For author
biographies, according to the stored tf and df, we use the
well-known tf-idf term-weighting measure to calculate the
weight of each word

wu = f t,bio
u · idf (1)

where id f denotes the inverse document frequency that is
given by idf = log2(Nbio/ f d

u), and Nbio is the total number
of biographies in a data set. The words are then sorted in
descending order according to their weights. The first words
Tbio are selected to construct the vocabulary Mbio for author
biographies. In this paper, we set Tbio = 10 000.

1http://www.gutenberg.org.

2540 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

Fig. 2. Construction of tree-structured feature.

For e-books, we used an English–Chinese dictionary.
It contains 24 678 words in total which are widely used in
real life. After performing stemming and stop-word removal,
15 601 words were left in the final vocabulary. This vocabulary
is available on our Web site.2 There are two major reasons
to use an external vocabulary. First, as books are usually
lengthy, a large-scale book set may cover the full vocabulary
we usually use. Second, most old novels were converted into
e-books through an optical character recognition (OCR)
process prior to being uploaded to the Internet. OCR errors
may cause numerous words to be misspelled and also to be
combined with neighboring words. As a result, the vocabulary
will be hugely expanded if we use the common vocabulary
construction method. For example, in keeping words that
appeared over five times, the vocabulary size of the book set
we used still reached to 1 232 445.

3) Book Segmentation: A book was partitioned into pages
that were further partitioned into paragraphs in order to extract
the spatial distributions of words over a book. We developed
Java code to perform the segmentation task. In e-books,
paragraphs can be easily identified using the separator \r\n.
First, a book was segmented into a number of paragraph blocks
using the paragraph separator \r\n. In order to control the
number of paragraphs, we merged the subsequent blocks to
form a new paragraph until the total number of words of
the merged blocks exceeded the paragraph threshold. In this
paper, we set the minimum threshold for the total number
of words in a paragraph at 50; otherwise, the new paragraph
block was merged with the previous paragraph. In this way,
paragraph blocks that comprise only a few words, for example,
one sentence as a paragraph, will be attached to relatively
larger paragraph blocks. A few paragraphs were merged to
form a new page when the total number of words of the
merged paragraphs exceeded a page threshold value which
was set at 1000. The overall book partitioning process can be
summarized as follows.

2http://www.ee.cityu.edu.hk/∼twschow/bookvocabulary.txt.

1) Partition a book into paragraph blocks using the
paragraph separator \r\n.

2) Merge the subsequent blocks to form a new page until
the total number of words of the merged blocks exceeds
a page threshold (set at 1000). There is no minimum
threshold for the last page. The pages are formed.

3) Partition each generated page into paragraphs using the
separator again. Merge these subsequent paragraphs in
the same fashion as in Step 2) to form a new para-
graph until the total number of words of the merged
paragraphs exceeds the paragraph threshold value of 50.
The minimum threshold for the last paragraph of a page
is set at 30; otherwise, the paragraph is merged with the
previous paragraph.

It is worth noting that no specific rule exists for determining
the minimum/maximum number of words for a page. However,
the use of a word count threshold as an averaged number
of words in normal books enables us to control the number
of pages in each book. In addition, setting the minimum
threshold for the total number of words in a paragraph enables
us to attach the paragraphs that contain only a few words
to relatively larger paragraphs. Thus, we can appropriately
control the number of paragraphs in a page as well. Using
above-described book segmentation process, we are able to
build a hierarchical tree structure of each book for describing
the semantic information from global data view to local data
view.

4) Histogram Calculation: In the author tree structure, the
root node contains the histogram of the biography of an author;
the second-level nodes are used for books; the third-level
nodes are used for pages; and the fourth-level nodes are
used for paragraphs. Given a biography, the word histogram
can be represented by H̃ bio = [n1, n2, . . . , nu , . . . , nTbio],
where nu is the number of times the corresponding word u
appears in a biography. For each book, word histograms
for paragraphs can be described in the first place by
{H̃ para = [n1, n2, . . . , nv , . . . , nTbook]}, where nv is the number
of times that the word v appears in a paragraph. The histogram

ZHANG et al.: ORGANIZING BOOKS AND AUTHORS BY MULTILAYER SOM 2541

sets for the pages, and the entire books can be achieved
by the hierarchical relationship {H̃ page = ∑

H̃ para} and
{H̃ book = ∑

H̃ page}, where H̃ page and H̃ book are histogram
vectors corresponding to a page and a book, respectively.
We then use the tf-idf scheme to weight the histograms. For
each biography, we weight the histogram in the form of

H bio = [h1, h2, . . . , hu, . . . , hTbio]
where hu = nu × log2

(
Nbio/ f d

u

)
. (2)

Likewise, for a book (or a page, or a paragraph), the weighting
histogram is in the form of

H = [h1, h2, . . . , hv , . . . , hTbook]
where hv = nv × log2

(
Nbook/ f d

v

)
(3)

where Nbook is the total number of books in the data set.
5) PCA Projection: In a tree, the histogram of each node

is usually a large-size vector, and the total number of nodes
in a book set is also large. In order to make the framework
computationally efficient, PCA was used to project each node
histogram into a lower dimensional feature vector. It is noted
that other dimensionality reduction methods, such as LSI [12],
PLSI [13], and LDA [14], can be used for feature projection.
We used the MATLAB tool [27] to calculate the PCA projec-
tion matrix. For the root node, i.e., the biography histogram,
the projected feature is calculated by

Fbio
h = H bio × Bbio (4)

where Bbio is the projection matrix of dimension Tbio × mbio
F ,

and mbio
F is the dimension of the projected feature. In our

study, mbio
F was set at 100.

We constructed the projection matrix B for book contents
only at the second-level nodes. It means that we used the
histograms at the book level to compute the matrix B , and
this same matrix B was used to project the histogram features
for pages and paragraphs. According to our empirical study,
generating the PCA projection matrix separately at the page
and paragraph level delivers similar result using the reduced
matrix generated from the projection matrix at the book level.
The projection can be accomplished by

Fh = H × B (5)

where B is the projection matrix of dimension Tbook × mF ,
where mF is the dimension of the projected feature. The
above-mentioned histogram features H for the second-, third-,
and fourth-level nodes are extracted from a book, a page, and
a paragraph, respectively. One advantage of such a projection
is that the projected features in Fh are ordered according to
their statistical importance. In this paper, mF was initially set
at 150 for the book-level nodes, but the number of features
used at the third- and fourth-level nodes was further reduced
with respect to pages and paragraphs, respectively. Thus, the
new dimensions of the PCA features for the first-, second-,
third-, and fourth-level nodes are 100, 150, 100, and 50,
respectively.

In the end, each node in the tree structure was assigned
a set of information such that we can see how the nodes
are dependent on each other in the tree structure. The set of

information included: 1) a node index; 2) the level in the tree;
3) the parent node index; 4) the child node index; and 5) the
compressed PCA features. A tree-structured representation
encoded with this set of information was returned, as shown
in Fig. 1. It is worth noting that we need to save the vocabulary
bases and the projection matrices for feature extraction of a
new book query and a new author query. The tree-structured
features of a new query can be extracted in a similar way.

III. ORGANIZATION OF BOOKS AND

AUTHORS USING MLSOM

This section introduces an MLSOM training framework.
First, we briefly review the training process of the basic
SOM algorithm. We then build a four-layer MLSOM system
and provide its implementation details.

A. Self-Organizing Map

The SOM [28] is a versatile unsupervised neural network
used for dimensionality reduction, vector quantization, and
visualization. It is able to preserve a topologically ordered
output map, where input data are mapped into a small number
of neurons. A basic SOM comprises N neurons located on
a regular low-dimensional grid, which is usually a 2-D grid.
The lattice of the grid is either hexagonal or rectangular. The
SOM algorithm is iterative. Each neuron i has a d-dimensional
feature vector wi = [wi1, . . . , wid]T . At each training step t ,
a sample data vector x(t) is randomly selected from a training
set. The distances between x(t) and all the feature vectors {wi }
are calculated. The winning neuron, denoted by c, is the
neuron with the feature vector closest to x(t) given by

c = arg min
i

(S(x(t),wi)), i ∈ {1, 2, . . . , N } (6)

where S(x(t),wi) is a distance function between x(t) and wi .
In the sequential SOM algorithm, the winner neuron

and its neighbor neurons are updated according to the
weight-updating rule, which can be written as

w j (t + 1) =
{

w j (t) + η(t)h jc(t)(x(t) − w j (t)) ∀ j ∈ Nc

w j (t), otherwise

(7)

where Nc is a set of neighboring neurons of the winning
neuron. η(t) is the learning rate which decreases monoton-
ically with iteration t in the form of

η(t) = η0 · exp

(

−α · t

τ

)

(8)

where η0 is the initial learning rate, α is an exponential
decaying constant, which is set to 3 in this paper, and τ is
a time constant set to the maximum number of iterations.
h jc(t) is the neighborhood kernel function that indicates the
distance of a neighborhood neuron j with the coordinate
(x j , y j) to the winning neuron c at the position (xc, yc). This
neighborhood function is a nonincreasing function that can be
taken as a Gaussian function

h jc(t) = exp

(

−[(x j − xc)
2 + (y j − yc)

2]
2(σ (t))2

)

(9)

2542 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

Fig. 3. Illustration of a four-layer MLSOM. (a) Mapping of a four-level
tree-structured data into a three-layer MLSOM. (b) SOM input generation for
node C . (c) Block diagram describing the mapping process of a tree-structured
data into MLSOM.

where σ(t) is the width of the neighborhood function that
decreases monotonically with iteration t in the form of

σ(t) = η0 · exp

(

− t

τ
· log(σ0)

)

(10)

where σ0 is the initial width. The detailed training procedures
can be found in [28].

B. MLSOM

The conventional SOM cannot represent tree-structured
data, because its inputs are only represented by flat vec-
tors. MLSOM [20], [22], an extension of SOM model, was
developed for processing tree-structured data. Its multilayer
structure is particularly designed for the node representation
of a tree. A tree locates nodes at different levels. A node
in the tree consists of two types of information: the node
features of its own and its child nodes. In an MLSOM, there
are as many SOM layers as the number of levels in the tree,
for example, four different SOMs for a four-layer MLSOM
used in our application. Nodes at each level are processed by
the corresponding layer of an MLSOM. Fig. 3(a) shows how
four-level tree data are mapped into a four-layer MLSOM.
First, the fourth-level nodes, which comprise the features of
different paragraphs, are mapped onto layer 4 as the bottom
SOM output. The winner neurons of different nodes or para-
graphs (e.g., nodes E, F, and G) are described by their

corresponding position vectors (e.g., pE , pF , and pG). It is
worth noting that the fourth layer comprises a huge number
of child nodes for representing all the paragraphs in a data
set. Using the fourth-layer SOM enables us to compress all
the paragraphs into 2-D position vectors, but the topology of
the original paragraphs is preserved. As a result, the input
vector of layer 3 SOM includes the third-level node (page)
features and the corresponding position vectors of the
fourth-level nodes. In this way, a compressed input vector
for layer 3 SOM can be formulated. Fig. 3(b) shows how a
third-layer input feature vector is encoded using the feature of
node C and the position vectors pE , pF , and pG . Fig. 3(b)
also demonstrates how position vectors are formed from the
outputs of layer 4 SOM into a structured format generating
the input vector of layer 3 SOM. Similarly, the second-level
nodes (books) and the root nodes (authors) can be processed
at layer 2 SOM and layer 1 SOM, respectively. It should be
noted that the fourth-, third-, and second-layer SOMs are used
to compress the features with respect to the information of
paragraphs, pages, and books, respectively. At the top layer,
the root node can compactly represent the entire tree at the
first-layer SOM. It is encoded by the information of author
biographies and book contents. The whole feature compression
procedures are summarized in the block diagrams, as shown
in Fig. 3(c).

It is worth pointing out that the MLSOM considered here
is different from traditional hierarchical SOMs, such as grow-
ing neural gas [31], growing hierarchical SOM [32], and
tree-structured SOM [33], or even more advanced SOMs
using spatial access methods (SAMs) [34] or metric access
methods [35] to speed up the training process of hierarchi-
cal SOMs. An excellent survey on these tree-based variants of
SOM can be found in [36]. These methods work on the SOM
topology aiming at mapping a data set (or a set of patterns)
onto a set of tree-structured neurons according to the spatial
relationship among data samples (or patterns). The feature of
each sample must have a flat structure, although the entire data
set has a hierarchical structure constructed by these samples.
In our proposed book and author organization system, each
sample, however, has a tree-structured representation that aims
at encoding the spatial information of the features of each
sample. MLSOM designed for handling tree-structured data is
then used to integrate the information from leaf nodes layer
by layer.

C. MLSOM Training

In MLSOM, a node feature vector Fk at the kth level (here,
k = 1, 2, 3, or 4) is represented by Fk = [f1,F , f2,F , . . . ,
fm,F , p1,F , p2,F , . . . , pcmax,F]T , where fi,F represents the i th
feature of node Fk , p j,F = [x j,F , y j,F]T (x j,F ∈ [0, 1],
y j,F ∈ [0, 1]) is a normalized 2-D position vector of
a neuron that compactly represents the j th child node
of node Fk , and cmax is the maximum number of child
nodes of the nodes at the kth level. The position vectors
[p1,F , p2,F , . . . , pcmax,F] can be obtained according to the
spatial positions that will be discussed later in this section.
It should be noted that a node may have less than the cmax
number of child nodes. As a result, some of p j,F may

ZHANG et al.: ORGANIZING BOOKS AND AUTHORS BY MULTILAYER SOM 2543

contain zero vector [0, 0]. In MLSOM training, the weight
vector Wk of a neuron at the kth layer is represented
by Wk = [f1,w, f2,w, . . . , fm,w, p1,w, p2,w, . . . , pcmax,w]T ,
where fi,w is the i th weight, and p j,w = [xi,w, yi,w]T is
a 2-D vector. To find the winner neuron, we have used the
following function to compute the distance between a node
and a neuron:

S(F, W) = C ·
⎛

⎝1 −
∑m

i=1 fi,F × fi,w
√∑m

i=1 (fi,F)2 ×
√∑m

i=1 (fi,w)2

⎞

⎠

+ (1 − C) · 1
∑cmax

j=1 (p j,F)

cmax∑

j=1

(p j,F)

· d(p j,F , p j,w) (11)

where

(p j,F) =
{

1, if p j,F �= (0, 0)

0, otherwise

where C is a weight parameter, and d is a Euclidean distance
function. The first part of the expression calculates the global
distance in the form of the cosine distance using the node
feature, and the second part computes the local distance using
position vectors of child nodes. It is worth noting that, in
the bottom-level nodes, only the first part of (11) is used.
The weight parameter C is used to balance those two parts.
It puts relative emphasis between the global and local distance
measure. A larger value of C , C > 0.5, indicates that emphasis
is placed on the global information, and a small value of C ,
C < 0.5, indicates that the local distance from the term spatial
distributions is emphasized in between-document comparison.
In this way, it provides users with flexibility to change the
value of C to balance the distance measure according to their
expectations. The effect of C will also be discussed in our
experiment.

MLSOM training process starts with the fourth-layer SOM,
which is trained using the node features at the fourth level
(paragraph level). Then, the feature inputs of the third-level
nodes (pages) are generated by integrating the nodes’ features
at this level and the position vectors of the corresponding child
nodes, as shown in Fig. 3(b). The third-layer SOM is trained
with these combined feature inputs. Similarly, the second-layer
SOM is trained with the second-level nodes’ features (books)
and the position vectors of the child nodes generated from
the third layer. Finally, the top-layer SOM is trained by the
SOM inputs for the root nodes (authors). It is worth noting
that mapping the position vectors of child nodes into the SOM
input vector is required, while the inputs for each layered SOM
are generating. Here, we use a simple 1-D SOM to produce the
mapping of position vectors. This mapping aims at making an
appropriate matching between two sets of nodes with respect
to the local distance in the second part of (11). Despite the
fact that two sets may contain a different number of nodes,
the mapping produced by 1-D SOM enables us to compare
a child node of the former set with only one similar child
node of the latter set. This comparison can largely avoid the
mismatch between any two sets. Thus, the local distance from

leaf nodes can be well-estimated. The 1-D SOM is trained
by all the position vectors over the data set at a certain level
[see Fig. 3(b)]. Then, this well-trained 1-D SOM is employed
to map the set of position vectors. The detailed mapping
procedure can be found in [20].

D. Computational Complexity

MLSOM training is an iterative process. The computational
complexity of conducting one epoch of a four-layer
MLSOM training is O(N1m1(n1 + 2c1) + ∑4

k=2 Nk(mk(nk+
2ck) + 2ck c̄k)), where Nk is the total number of nodes
at the kth level of all the trees, mk is the number of
neurons at the kth layer of MLSOM, nk is the number of
input features of a node at the kth level, ck and c̄k are
the maximum and average number of children nodes at
the kth level of all the trees. At the testing stage, given
an author query, the computational complexity is around
O(N Q

1 m1(n1 + 2c1) + ∑4
k=2 N Q

k (mk(nk + 2ck) + 2ck c̄k)),
where N Q

k is the number of nodes at the kth level of the given
author tree. The largest time cost comes from finding the best
matching unit (BMU) using the sequential approach [36].
The number of operations for distance comparison at each
level to find the BMU is N Q

k mk . Finding the BMU can be
done in parallel.

IV. BOOK AND AUTHOR RECOMMENDATION

For the purpose of practical applications, it is straightfor-
ward to develop a book and author recommender system under
our proposed framework. In this section, we introduce the
implementation details of the system using our framework.

A. Training Preprocess

Before conducting above-mentioned applications, we
first perform the MLSOM preprocessing. The preprocessing
procedures include the following.

1) Train the MLSOM with all the tree-structured data in
the data set.

2) For the top-layer SOM, save the index of author data
against their winner neurons. This will be used for author
recommendation.

3) For the second-layer SOM, save the index of books
and their node indexes against the corresponding winner
neurons. This will be used for book recommendation.

4) Save all the weights of MLSOM and 1-D SOM. Thus,
the trained MLSOM, together with the vocabulary bases
and PCA projection matrices, gets ready to perform
various applications.

B. Book Recommendation

It is natural to use our framework for book recommendation.
Each book is represented by a node at the second level in the
tree structure. These nodes are processed at the second-layer
SOM. Each book can be indexed against its winner neuron at
the grid of the second-layer SOM, because the book and neu-
ron association has been achieved at the preprocessing stage.
Thus, a content-based book recommender system considering
term spatial distributions can be implemented in the following
steps.

2544 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

TABLE I

DISTRIBUTION OF NODES IN THE WHOLE DATA SET

1) For a given book query, extract its tree structure.
Compute the projected features using prestored vocabu-
lary base and PCA projection matrix.

2) Match the nodes of the tree level by level from
the bottom layer (paragraph level) to the second
layer (book level), find the closer neurons on the
second-layer SOM grid and return their attached books.

3) Go through the sorted neurons in descending order and
add their attached books into the recommendation list
until at least user-defined Nret books are appended.

4) Sort the books in the recommendation list by comparing
the query with the inputs of the second-layer nodes
according to 12. Recommend the first Nret books to
users.

C. Author Recommendation

In practice, a user (or reader) is most likely to buy or
read the writings of his/her favorite author. Relying on these
behavior data, an online store can recommend other authors
together with their books, which are most relevant to the
user’s preferred authors. Although many factors may affect
the relevance between two authors, biography and book con-
tents are two critical features that can be used to evaluate
the relationship between two authors, because the biography
provides a detailed description of an author’s life (i.e., global
information), whereas book contents highlight the author’s
work, which appears as local information. In this paper, our
proposed tree structure entails a combination of biography and
book contents. The MLSOM-based author recommender is
similar to the book recommender. Due to space limitation, the
detailed recommendation procedure is not explicitly given.

V. EXPERIMENT

We conducted extensive experiments to evaluate the
proposed framework—in particular, the performance of
various models on content-based recommendation. Data
collection, implementation details, experimental results, para-
metric study, and MLSOM visualization results are presented
in the following.

A. Data Collection

At present, there is no publicly available data set for
this kind of research. In order to provide a real life and
demanding testing platform, we have established a large-scale
data set which contains 3868 authors and 10 500 e-books
in English that they wrote. These books that are in the
.txt format were collected from Project Gutenberg. Due
to copyright, we cannot distribute the original raw text
data at this stage, but the author and book list can be
downloaded at www.ee.cityu.edu.hk/∼twschow/booklist.txt
for other researchers. Statistics on node distributions over
the whole data set are listed in Table I. It is also observed

Fig. 4. Probability distribution against number of books written by an author.

from the data set that the numbers of writings of most
authors are smaller than 10. The top three authors are
Fenn, Kingston, and Ballantyne, who have written
100, 92, and 82 books, respectively. To further investigate
the distribution property of number of books against different
authors in the data set, we plotted the probability distribution
against the number of books written by an author, as shown
in Fig. 4. From the perspective of complex networks [29],
this distribution can be described by a power-law function of
the form

P(k) ∼ k−γ (12)

where P(k) represents the probability that an author has
written exact k books, and γ is an exponential constant
determined by the given data set, for example, in our data
set, γ ≈ 1.69.

B. Experimental Design

According to the scale of the data set, the size of the
top, second, third, and bottom layers of MLSOM was set
at 30 × 30, 36 × 36, 42 × 42, and 48 × 48, respectively.
The initial learning rate was set to 0.3. The initial radius
of the neighborhood function was set to half-length of the
square grid at an SOM layer. The number of total training
iterations was set to the rounded multiple of the number of
data-nodes in the corresponding level for the top, second,
third, and bottom layers, respectively. In this paper, these
settings of the above parameters were observed to be a
good choice. For comparison, we compare the MLSOM-based
method with the state-of-the-art algorithms, including
RAP [38], LDA [14], PLSI [13], LSI [12], and VSM [11].
We also tested another two algorithms: 1) MLSOM-Global,
which only uses the global distance in MLSOM (i.e., the
weight parameter C = 1) and 2) MLSOM-Local, which relies
on the local distance in MLSOM (i.e., the weight parameter
C = 0). All the experiments were performed on a PC with
Intel(R) Xeon(R) CPU X3430@ 2.40 GHz and 8.00 GB
memory. The feature extraction programs were written in Java
programming language. The MLSOM programs were tested on
MATLAB 7.12.0 (R2011a). To quantify the recommendation
results, we used three metrics, which have been commonly
adopted in recommender systems [30]: 1) mean reciprocal
rank (MRR); 2) success at rank k (S@k), where k is the
number of recommended books/authors; and 3) precision at
rank k (P@k).

C. Book Recommendation

To evaluate recommendation performance according to the
aforementioned metrics, we first need to assess the relevance

ZHANG et al.: ORGANIZING BOOKS AND AUTHORS BY MULTILAYER SOM 2545

TABLE II

DISTRIBUTION OF NODES IN bookset-goodreads.com
FOR BOOK RECOMMENDATION

TABLE III

COMPARATIVE RESULTS OF DIFFERENT METHODS

ON bookset-goodreads.com (PERCENTAGE)

between two books. It will be laborious and time consuming
to have them assessed manually over the whole data set.
To overcome this difficulty, we used categorical information
of books. Two books are assumed to be relevant if they are
from the same category. However, the books collected from
Project Gutenberg do not have such categorical information.
To obtain book categories, we input the whole book list from
our data set into two online Web sites: www.goodreads.com
and www.ebooks.com, which consist of many popular catego-
rized e-books. Two subsets, i.e., bookset-goodreads.com and
bookset-ebooks.com, were found in these two sites, respec-
tively. The found books were attached to category labels.

1) Results on Bookset-Goodreads.com: The bookset-
goodreads.com contains 2708 books. Each book is labeled by
multiple genres associated with the number of users who label
the book as these genres. For instance, the genres of book
Mother Carey’s Chickens include classics labeled by five users,
kids labeled by two users, and children’s labeled by two users.
Based on this observation, we define that two books are
relevant if any of their labeled genres are overlapped. We used
this subset to test the performance of various algorithms on
recommendation task. We randomly assigned 2438 books,
i.e., around 90% of the subset, as a candidate set and 270 books
as a test set that is used for query. The lists for training and
test are available in our site. Node distribution in different
tree-levels of book data (second layer to fourth layer, because
we only need to use the book, page, and paragraph level for
book recommendation) is listed in Table II.

The numerically comparative results of different methods
are summarized in Table III. The results of MLSOM are
based on the optimal weight C = 0.4. We have included
the effectiveness study on this parameter latter in this section.
We also include the P@k and S@k results visually shown
in Fig. 5 for k ranging from 1 to 10. As shown in Table III,
MLSOM delivers better MRR value than other methods.
From Fig. 5(a), it is observed that MLSOM outperforms
VSM, LSI, PLSI, MLSOM-Global, and MLSOM-Local with
respect to precision when the top ten books are recommended.
In addition, MLSOM performs better than LDA when the
top five books are returned, but LDA slightly outperforms

Fig. 5. Results of different methods on bookset-goodreads.com in terms of
(a) P@k and (b) S@k (k = 1, 2, . . . , 10).

TABLE IV

DISTRIBUTION OF NODES IN bookset-ebooks.com
FOR BOOK RECOMMENDATION

TABLE V

COMPARATIVE RESULTS OF DIFFERENT METHODS
ON bookset-ebooks.com (PERCENTAGE)

MLSOM with the increase of the number of recommended
books. It is clear that combining the information from
the global and local does bring performance improve-
ment when comparing MLSOM with MLSOM-Global and
MLSOM-Local. From Fig. 5(b), we can observe that MLSOM
can produce at least 3% improvement over other methods in
terms of S@1, but it produces worse results compared with
PLSI and LDA when the number of recommended books, k,
ranging from 4 to 10.

2) Results on Bookset-ebooks.com: The bookset-
ebooks.com contains 2069 books. Each book is labeled
in multiple levels by the Web site. For instance, the book
Jungle Tales of Tarzan is labeled as Fiction > Classics
Fiction > Action and Adventure. In this paper, we define
that two books are relevant if their labels are the same at the
top level. We randomly assigned 1863 books as a candidate
set and 206 books as a test set. The lists for training and
test can be found in our site. Node distribution in different
tree-levels of book data is listed in Table IV.

Table V shows the quantity results of different methods.
The results of MLSOM are based on the optimal weight
C = 0.35. It is observed that MLSOM and PLSI deliver
better MRR value than other methods. In particular, MLSOM
performs the best in terms of S@1. It can produce around 4%
improvement over MLSOM-Global, MLSOM-Local, RAP,
LDA, LSI, and VSM. Furthermore, MLSOM outperforms
other methods in terms of P@5. Fig. 6 visually demonstrates
the P@k and S@k results (k = 1, 2, . . . , 10). From Fig. 6(a),
MLSOM consistently outperforms other methods when eight
books are recommended. It is noted that MLSOM performs

2546 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

TABLE VI

RESULTS OF DIFFERENT METHODS USING BOOK DATA MINING CONCEPTS AND TECHNIQUES AS A QUERY

Fig. 6. Results of different methods on bookset-ebooks.com in terms
of (a) P@k and (b) S@k (k = 1, 2, . . . , 10).

clearly better than LDA and RAP when a few numbers of
books (less than five) are retrieved, but the precision curves
tend to merge with the increase of the number of recommended
books. In contrast to the comparative results of precision,
MLSOM, MLSOM-Global, RAP, LDA, PLSI, LSI, and VSM
deliver similar S@k results, as shown in Fig. 6(b).

3) Example: To further evaluate the performance of the
proposed framework, we used a popular book in data mining,
Data Mining Concepts and Techniques (second edition),
written by Han and Kamber as a query. We then found
another 19 books recommended by Amazon on the home
page of book Data Mining Concepts and Techniques. These
19 books were combined into the subset, bookset-ebooks.com.
Thus, 2088 books in total were used as the candidate set.
Apparently, these 19 books are more relevant to book Data
Mining Concepts and Techniques compared with the books
in bookset-ebooks.com. The ranking list recommended by
Amazon recommender system is shown in the second column
of Table VI. The file name contains the book title and its
author name which are separated by the symbol “_”. We used
this ranking list as the ground truth. The values in Table VI
are the ranking numbers of these 19 books recommended
by different methods. For instance, the ranking number of
book Data Mining, Practical Machine Learning Tools and
Techniques written by Witten is 1 given by Amazon, 8 using
MLSOM, 9 using MLSOM-Global, 69 using MLSOM-Local,
8 using RAP, 2 using LDA, 7 using PLSI, 9 using LSI, 6 using
VSM, respectively. From Table VI, we can observe that the top
19 books are all relevant books by MLSOM recommendation,
whereas a few irrelevant books have been mistakenly returned

TABLE VII

DISTRIBUTION OF NODES IN AUTHOR SUBSET FOR RECOMMENDATION

in the ranking list using other methods. We can observe this
by checking if the number of ranking numbers is larger than
19 in Table VI. For example, LDA recommends two irrelevant
books in the top 19 ranking list, and the ranking number of the
first irrelevant book is 14; MLSOM-Global also recommends
two irrelevant books in the top 19 ranking list, and the ranking
numbers of these two irrelevant books are 12 and 18. We also
summarize the average rank for different approaches. It is clear
that MLSOM performs better than other methods, because
the average rank of 13.63 given by MLSOM is closer to the
ground truth, 10, given by Amazon.

D. Author Recommendation

As discussed before, given an author query, the recom-
mendation can be implemented by returning an author list,
in which each author is the most relevant to the query.
The entire data set includes 3868 authors associated with
10 500 books they have written. To evaluate the performance
of author recommendation, we inputted the whole author list
into Web site: www.goodreads.com and searched the authors
that have been labeled by this site. We found 1025 authors.
These authors wrote 4897 books in total. Each author has
been multilabeled by the site. For instance, author Baum is
labeled as Children’s Books, Fantasy and Fiction. We define
that two authors are relevant if any of their labels are matched.
We used this subset to test the performance of various algo-
rithms on author recommendation. We randomly assigned
923 authors as a candidate set and 102 authors as a test set.
The lists for training and test are available in our site. Node
distribution in different tree levels of author data is listed
in Table VII.

The numerically comparative results are summarized in
Table VIII. The results of MLSOM are based on the opti-
mal weight C = 0.6. It is clear that MLSOM produces
superior performance in comparison to other algorithms.
In particular, MLSOM brings over 3% improvement of MRR

ZHANG et al.: ORGANIZING BOOKS AND AUTHORS BY MULTILAYER SOM 2547

TABLE VIII

RESULTS OF DIFFERENT METHODS FOR AUTHOR
RECOMMENDATION (PERCENTAGE)

Fig. 7. Results of different methods on author recommendation in terms of
(a) P@k and (b) S@k (k = 1, 2, . . . , 10).

Fig. 8. Results against different weights C for book recommendation on
(a) bookset-goodreads.com and (b) bookset-ebooks.com.

and over 2.7% improvement of P@5 compared with other
methods. Fig. 7 visually demonstrates the P@k and S@k
results (k = 1, 2, . . . , 10). From Fig. 7(a), MLSOM performs
consistently better than other methods with respect to preci-
sion. As presented in Fig. 7(b), MLSOM outperforms other
approaches in terms of S@k (k = 1, 2, 3).

E. Parametric Study

Based on the assumption that using combined distances
from the global and local is able to deliver performance
improvement, there must have an optimal weight C to balance
this effect on 12. Fig. 8 shows the MRR, average P@k,
and average S@k (k = 1, 2, . . . , 10) values produced by
MLSOM against the weight values varying from 0 to 1 at
an increment of 0.05 for book recommendation data sets.
Fig. 9 shows the results of MLSOM against the weight
values ranging from 0 to 1 at an increment of 0.1 for author
recommendation data set. It is observed that there is an optimal
weight to balance the importance of the global and local
information in a way that the contribution of the global and
local semantics is demonstrated. As shown in Fig. 8(a) and (b),
setting the weight C at around 0.35 and 0.4 for bookset-
goodreads.com and bookset-ebooks.com, respectively, appears

Fig. 9. Results against different weights C for author recommendation.

Fig. 10. Results against different PCA dimensions at the book level
on (a) bookset-goodreads.com and (b) bookset-ebooks.com.

Fig. 11. Results against different PCA dimensions at the author level.

to be a good selection for the MLSOM algorithm. At the mean-
time, the optimal value of C stays around 0.6 for the author
recommendation subset, as shown in Fig. 9. The optimal value
of C is dependent upon different data sets. Users can specify
the relative emphasis between the global and local distances
by choosing an appropriate value of C according to the
nature of books or authors. According to our empirical study,
setting the weight C in the range of 0.3–0.5 and in the range
of 0.5–0.6 is more probable to achieve promising results
for book recommendation and author recommendation,
respectively.

The number of PCA projected feature dimensions may also
affect the recommendation results of our system. To show this
effect on the MLSOM system, for book recommendation, we
provided the results of MLSOM-related methods with different
feature dimensions varying from 50 to 250 at an increment
of 50 at the book level, as shown in Fig. 1. MLSOM has used
the optimal weight. The results are shown in Fig. 10(a) and (b).
It is observed that MLSOM-Global performs slightly better
than MLSOM in terms of MRR and average S@k
(k = 1, 2, . . . , 10) when the PCA dimension is equal to 50 on
bookset-goodreads.com. On the other hand, MLSOM-Global

2548 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

Fig. 12. Visualization map of authors. (a) Visualization of authors on MLSOM. (b) Author list.

outperforms MLSOM in terms of MRR and average S@k
(k = 1, 2, . . . , 10) when the PCA dimensions are equal to
50 and 250 on bookset-ebooks.com. However, for both book
data sets, MLSOM consistently outperforms MLSOM-Global
and MLSOM-Local in terms of average precision. At the
meantime, the performance of MLSOM on average precision
is very stable along with the change of feature dimensions.
It suggests that the result of MLSOM is not sensitive to
the PCA projected feature dimension for book recommenda-
tion. Moreover, Fig. 11 shows the results of MLSOM-related
methods with different feature dimensions at the author
level. The results show that MLSOM performs better than
MLSOM-Global and MLSOM-local along with the change
of feature dimensions from 100 to 250 at the author level.
The best performance is delivered by MLSOM when the
PCA feature dimension is equal to around 100.

F. Computational Time Performance

To examine the time performance of our proposed tech-
nique, we conduct an empirical study on the two book
sets, bookset-goodreads.com and the bookset-ebooks.com.
The average time cost of different methods for one book
query is summarized in Table IX. Apparently, the recorded
computational time [under a PC with Intel(R) Xeon(R)
CPU X3430@2.4 GHz and 8 GB Memory] is all around 1 s
which is well within satisfactory scale for practical applica-
tions. As LDA and PLSI deliver similar time performance with
LSI, their results are not explicitly given. From Table IX, we
can observe that LSI performed slightly faster than MLSOM,
because it uses only the low-dimensional document-level fea-
ture. Compared with LSI, MLSOM requires a fraction of a
second more, as it needs to integrate the information at the
page and paragraph level. To further test the time performance
of MLSOM for recommendation, we compiled a set including
5000 full-text books that are used for the candidate books.
The time cost of MLSOM for one book query is ∼1.81 s.
On the other hand, given a database, the book relevance in
terms of book content can be achieved offline using MLSOM.

TABLE IX

TIME COST OF DIFFERENT METHODS FOR BOOK RECOMMENDATION(s)

To support a production system, a parallel version of MLSOM
deserves a further investigation in the future.

G. Visualization

Visualizing authors on a map is another potential application
of our proposed framework. In online applications, authors are
usually listed in an alphabetical order. For example, Project
Gutenberg contains over ten thousands of authors which can
be browsed under an author list. However, it is difficult for
users to find the hidden relevance among these authors. With
the aid of our proposed framework, we can take advantage
of MLSOM to lay out all of the authors through a map.
In a well-trained MLSOM with all the tree-structure author
features, the top-layer SOM is a map of authors that demon-
strates author clusters capturing the relevance pattern among
authors. Thus, we can offer a visualization solution to online
applications. Furthermore, the system is able to assist users
to analyze or extract hidden pattern from presented author
clusters. In addition, the system can provide an interesting
visualization result on the similarity distance between
two authors, e.g., Tynan and Russell, who are Irish-born
novelists.

Based on our compiled data set, the visualization result
of our system is shown in Fig. 12. The 3868 authors were
mapped onto a 30 × 30 grid at the top layer of MLSOM,
in which the numbers represent author identities, and the
contour lines denote the densities of those neighborhoods
with respect to the number of authors projected onto the
grid. The darker blue indicates a smaller number of authors
on the grid. On the contrary, the darker yellow represents a
larger number of authors on the grid. Through clicking on
the grid, the system can show the corresponding coordinate,

ZHANG et al.: ORGANIZING BOOKS AND AUTHORS BY MULTILAYER SOM 2549

the authors and the books that they have written. For example,
Plunkett and Gregory are located at two neighboring grids,
(14, 22) and (13, 22), respectively. The result also shows that
the topics of their books are all related to Ireland. In addition,
it is noticed that Tynan and Russell are very close to each
other, because they are mapped onto the same grid in our
MLSOM system. Finally, the presented results demonstrate
that the proposed MLSOM is capable of forming a semantic
map of authors according to their books’ topics, which can be
useful for e-book applications.

VI. CONCLUSION

This paper investigated the use of MLSOM for the
organization of e-books and their authors. A tree structure
was proposed to represent the rich features of an author.
These features included the biography regarding the author’s
background information and book contents in terms of the
author’s previous works. Book content was partitioned into
a book-page-paragraph hierarchy. Content-based book and
author recommender systems were implemented under the
proposed framework. Our presented results demonstrate that
our system can be used as an effective solution to e-book
applications. Finally, the visualization results of our system
were also presented. With the e-books being getting increas-
ingly popular, we can perceive the potential applications of the
proposed MLSOM framework. In the future, developing other
methods to capture the local distance from leaf nodes, instead
of using 1-D SOM to generate position vectors in MLSOM,
may well be worth a further investigation. It is also interesting
to incorporate SAM [34] into MLSOM for time performance
improvement. We may achieve better scalability of the system
by gaining insight from string kernels computation based on
suffix arrays [39]. We also plan to extend our method in a
supervised manner for automatic parameter settings. In addi-
tion, a parallel version of MLSOM deserves further study.

ACKNOWLEDGMENT

The authors would like to thank reviewers for their detailed
and useful comments.

REFERENCES

[1] Grant Gross, IDG News Service, and PCWorld. (Nov. 19, 2007). Amazon
Launches Kindle e-Book Reader. MacBooks. [Online]. Available:
http://www.macworld.com/article/1061113/kindle.html

[2] S. Malik. (Aug. 6, 2012). Kindle eBook Sales Have Overtaken Amazon
Print Sales, Says Book Seller. The Guardian. [Online]. Available:
http://www.theguardian.com/books/2012/aug/06/amazon-kindle-ebook-
sales-overtake-print

[3] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond the
user-item matrix: A survey of the state of the art and future challenges,”
ACM Comput. Surv., vol. 47, no. 1, 2014, Art. ID 3.

[4] Y. Cai, H.-F. Leung, Q. Li, H. Min, J. Tang, and J. Li, “Typicality-based
collaborative filtering recommendation,” IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 3, pp. 766–779, Mar. 2014.

[5] M. Soares and P. Viana, “Tuning metadata for better movie content-based
recommendation systems,” Multimedia Tools Appl., vol. 74, no. 17,
pp. 7015–7036, 2014.

[6] A. Kent et al., Use of Library Materials: The University of Pittsburgh
Study. New York, NY, USA: Marcel Dekker, 1979.

[7] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong, “Addressing cold-start
problem in recommendation systems,” in Proc. 2nd Int. Conf. Ubiquitous
Inf. Manage. Commun., Suwon, Korea, Jan. 2008, pp. 208–211.

[8] E. Rich, “User modeling via stereotypes,” Cognit. Sci., vol. 3, no. 4,
pp. 329–354, Oct. 1979.

[9] E. Rich, “Users are individuals: Individualizing user models,” Int. J.
Man-Mach. Stud., vol. 18, no. 3, pp. 199–214, 1983.

[10] R. J. Mooney and L. Roy, “Content-based book recommending using
learning for text categorization,” in Proc. 5th ACM Conf. Digit.
Libraries, San Antonio, TX, USA, Jun. 2000, pp. 195–204.

[11] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. New York, NY, USA: McGraw-Hill, 1983.

[12] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” J. Amer. Soc. Inf.
Sci., vol. 41, no. 6, pp. 391–407, 1990.

[13] T. Hofmann, “Probabilistic latent semantic indexing,” in Proc. 22nd
Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., Berkeley, CA,
USA, Aug. 1999, pp. 50–57.

[14] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[15] H. Zhang, T. W. S. Chow, and M. K. M. Rahman, “A new dual wing
harmonium model for document retrieval,” Pattern Recognit., vol. 42,
no. 11, pp. 2950–2960, 2009.

[16] A. Schenker, M. Last, H. Bunke, and A. Kandel, “Classification of Web
documents using graph matching,” Int. J. Pattern Recognit. Artif. Intell.,
vol. 18, no. 3, pp. 475–496, 2004.

[17] M. Fuketa, S. Lee, T. Tsuji, M. Okada, and J.-I. Aoe, “A document
classification method by using field association words,” Inf. Sci.,
vol. 126, nos. 1–4, pp. 57–70, 2000.

[18] C.-M. Tan, Y.-F. Wang, and C.-D. Lee, “The use of bigrams to enhance
text categorization,” Inf. Process. Manage., Int. J., vol. 38, no. 4,
pp. 529–546, 2002.

[19] M.-L. Antonie and O. R. Zaiane, “Text document categorization by term
association,” in Proc. IEEE Int. Conf. Data Mining, Maebashi, Japan,
Dec. 2002, pp. 19–26.

[20] T. W. S. Chow and M. K. M. Rahman, “Multilayer SOM with tree-
structured data for efficient document retrieval and plagiarism detection,”
IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1385–1402, Sep. 2009.

[21] T. W. S. Chow, H. Zhang, and M. K. M. Rahman, “A new document
representation using term frequency and vectorized graph connectionists
with application to document retrieval,” Expert Syst. Appl., vol. 36,
no. 10, pp. 12023–12035, 2009.

[22] M. K. M. Rahman, W. P. Yang, T. W. S. Chow, and S. Wu, “A flexible
multi-layer self-organizing map for generic processing of tree-structured
data,” Pattern Recognit., vol. 40, no. 5, pp. 1406–1424, 2007.

[23] T. Heck, I. Peters, and W. G. Stock, “Testing collaborative filtering
against co-citation analysis and bibliographic coupling for academic
author recommendation,” in Proc. 3rd ACM Workshop Rec. Syst. Social
Web (RecSys), Chicago, IL, USA, Jul. 2011, pp. 16–23.

[24] P. C. Vaz, D. M. de Matos, B. Martins, and A. Calado, “Improving a
hybrid literary book recommendation system through author ranking,”
in Proc. 12th ACM/IEEE-CS Joint Conf. Digit. Libraries, Washington,
DC, USA, Jun. 2012, pp. 387–388.

[25] H. Petry, P. Tedesco, V. Vieira, and A. C. Salgado, “ICARE: A context-
sensitive expert recommendation system,” in Proc. 18th Eur. Conf. Artif.
Intell., Patras, Greece, Jul. 2008, pp. 53–58.

[26] T. Reichling and V. Wulf, “Expert recommender systems in practice:
Evaluating semi-automatic profile generation,” in Proc. SIGCHI Conf.
Human Factors Comput. Syst., Boston, MA, USA, 2009, pp. 59–68.

[27] E. Høgh-Rasmussen. (2005). BBTools—A MATLAB Toolbox for
Black-Box Computations. Neurobiology Research Unit, Copenhagen
University Hospital. [Online]. Available: http://nru.dk/software/bbtools/

[28] T. Kohonen, Self-Organizing Maps. Berlin, Germany: Springer-Verlag,
1997.

[29] M. E. J. Newman, Networks: An Introduction. New York, NY, USA:
Oxford Univ. Press, 2010.

[30] B. Sigurbjörnsson and R. van Zwol, “Flickr tag recommendation based
on collective knowledge,” in Proc. 17th Int. Conf. World Wide Web,
Beijing, China, Apr. 2008, pp. 327–336.

[31] B. Fritzke, “A growing neural gas network learns topologies,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 7. 1995, pp. 625–632.

[32] A. Rauber, D. Merkl, and M. Dittenbach, “The growing hierarchi-
cal self-organizing map: Exploratory analysis of high-dimensional
data,” IEEE Trans. Neural Netw., vol. 13, no. 6, pp. 1331–1341,
Nov. 2002.

[33] J. A. F. Costa and M. L. de Andrade Netto, “A new tree-structured
self-organizing map for data analysis,” in Proc. Int. Joint Conf. Neural
Netw., vol. 3. Washington, DC, USA, Jul. 2001, pp. 1931–1936.

2550 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

[34] E. Cuadros-Vargas and R. A. F. Romero, “A SAM-SOM family:
Incorporating spatial access methods into constructive self-organizing
maps,” in Proc. Int. Joint Conf. Neural Netw., vol. 2. Honolulu, HI,
USA, May 2002, pp. 1172–1177.

[35] M. R. Vieira, C. Traina, Jr., F. J. T. Chino, and A. J. M. Traina,
“DBM-tree: Trading height-balancing for performance in metric access
methods,” J. Brazilian Comput. Soc., vol. 11, no. 3, pp. 37–51, 2006.

[36] C. A. Astudillo and B. J. Oommen, “Topology-oriented self-organizing
maps: A survey,” Pattern Anal. Appl., vol. 17, no. 2, pp. 223–248, 2014.

[37] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[38] P. V. Gehler, A. D. Holub, and M. Welling, “The rate adapting Poisson
model for information retrieval and object recognition,” in Proc. 23rd
Int. Conf. Mach. Learn., Pittsburgh, PA, USA, Jun. 2006, pp. 337–344.

[39] C. H. Teo and S. V. N. Vishwanathan, “Fast and space efficient string
kernels using suffix arrays,” in Proc. 23rd Int. Conf. Mach. Learn.,
Pittsburgh, PA, USA, Jun. 2006, pp. 929–936.

Haijun Zhang (M’13) received the B.Eng. and
master’s degrees from Northeastern University,
Shenyang, China, in 2004 and 2007, respectively,
and the Ph.D. degree from the Department of Elec-
tronic Engineering, City University of Hong Kong,
Hong Kong, in 2010.

He was a Post-Doctoral Research Fellow with the
Department of Electrical and Computer Engineer-
ing, University of Windsor, Windsor, ON, Canada,
from 2010 to 2011. Since 2012, he has been with
the Shenzhen Graduate School, Harbin Institute of

Technology, Shenzhen, China, where he is currently an Associate Professor
of Computer Science. His current research interests include multimedia data
mining, machine learning, pattern recognition, evolutionary computing, and
communication networks.

Tommy W. S. Chow (M’94–SM’03) received
the B.Sc. (Hons.) and Ph.D. degrees from the
Department of Electrical and Electronic
Engineering, University of Sunderland, Sunderland,
U.K.

He has been involved in different consultancy
projects with the Mass Transit Railway,
Kowloon–Canton Railway Corporation, Hong Kong.
He has also conducted other collaborative projects
with Hong Kong Electric Company, Ltd.,
Hong Kong, MTR, Hong Kong, and Observatory

Hong Kong, Hong Kong, where he is involved in the application of neural
networks for machine fault detection and forecasting. He is currently a
Professor with the Department of Electronic Engineering, City University of
Hong Kong, Hong Kong. He has authored or co-authored over 170 journal
articles related to his research, five book chapters, and one book. His
current research interests include neural networks, machine learning, pattern
recognition, and documents analysis and recognition.

Prof. Chow received the best paper award in the IEEE Industrial Electronics
Society Annual Meeting, Seville, Spain, in 2002.

Q. M. Jonathan Wu (M’92–SM’09) received the
Ph.D. degree in electrical engineering from the Uni-
versity of Wales, Swansea, U.K., in 1990.

He has been with the National Research Council of
Canada for ten years since 1995, where he became
a Senior Research Officer and Group Leader.
He is currently a Professor with the Department of
Electrical and Computer Engineering, University of
Windsor, Windsor, ON, Canada. He has authored
over 250 peer-reviewed papers in computer vision,
image processing, intelligent systems, robotics, and

integrated microsystems. His current research interests include 3-D computer
vision, active video object tracking and extraction, interactive multimedia,
sensor analysis and fusion, and visual sensor networks.

Dr. Wu holds the Tier 1 Canada Research Chair in Automotive
Sensors and Information Systems. He was an Associate Editor of the IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART A and the
International Journal of Robotics and Automation. He has served on the
technical program committees and international advisory committees for many
prestigious conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

