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Abstract— Multilabel learning aims to predict labels of unseen
instances by learning from training samples that are associated
with a set of known labels. In this paper, we propose to use a
hierarchical tree model for multilabel learning, and to develop
the ML-Tree algorithm for finding the tree structure. ML-Tree
considers a tree as a hierarchy of data and constructs the tree
using the induction of one-against-all SVM classifiers at each
node to recursively partition the data into child nodes. For
each node, we define a predictive label vector to represent the
predictive label transmission in the tree model for multilabel
prediction and automatic discovery of the label relationships.
If two labels co-occur frequently as predictive labels at leaf
nodes, these labels are supposed to be relevant. The amount
of predictive label co-occurrence provides an estimation of the
label relationships. We examine the ML-Tree method on 11 real
data sets of different domains and compare it with six well-
established multilabel learning algorithms. The performances of
these approaches are evaluated by 16 commonly used measures.
We also conduct Friedman and Nemenyi tests to assess the statis-
tical significance of the differences in performance. Experimental
results demonstrate the effectiveness of our method.

Index Terms— Hierarchical tree model, multilabel
classification, multilabel learning, tree-based classification.

I. INTRODUCTION

EACH entity in nature may have multiple labels.
For example, a patient may suffer from a few diseases;

a gene may be associated with a number of functional
classes; a document may cover several topics. This drives
the need for effective approaches to cope with the multilabel
learning problem. Because of the potential applications,
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such as text categorization [1]–[4], bioinformatics [5]–[7],
image classification [8], [9], video annotation [10], and
audio emotion detection [11], multilabel learning has caught
broad attention in the research community over the past
few years.

One simple approach to solve the multilabel problem is
to decompose it into a set of single-label problems and to
train independent binary classifier for each class label. This
approach is known as the binary relevance (BR) method [12].
However, the main drawback of this approach lies in the fact
that it ignores the correlations among labels. The label sets of
different multilabel instances may overlap and the presence or
absence of the labels for an instance needs to be predicted at
the same time via exploiting correlations between these labels,
which usually cannot be accomplished using BR. Therefore,
it is desirable to develop more effective methods to explicitly
capture the label correlation knowledge to increase prediction
accuracy for multilabel learning.

The contribution of this paper is a new hierarchical tree
approach, called ML-Tree, which encodes the label correlation
information in a tree classification model for multilabel
learning. The set of multilabel training data can be represented
in the form of a tree structure where the root node corresponds
to all the instances in the data, and the leaves correspond to
the resulting fragments of the instances. For this approach,
one-against-all SVM classifiers (with winner-takes-all
strategy) are applied at each node to recursively partition the
training instances into smaller subsets while moving down
the tree. This process continues until the remaining instances
at the node cannot be further split by the induced classifiers.
For each node, we define a predictive label vector (PLV) to
represent the predictive label transmission in the hierarchical
tree model. The predictive labels are shared across the
tree model and they are transferred in a top-down manner.
Intuitively, if the instances at a node v are labeled with a
class l, all instances of the child nodes of v will inherit
the label l. In the training phase, PLV serves as a filter to
select the individual one-against-all classifiers for learning
at each node. In the testing phase, PLV ensures that a
multilabel prediction at a leaf node is the integration of
labeling results of all the nodes from the root down to the
leaf node. With the propagation of the predictive labels, the
correlations between labels can be preserved. Unlike
the BR approach, our ML-Tree method provides a
new multilabel classification framework, where the
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original multilabel classification is cast into the hierarchical
nested one-against-all classification problems, and learning
classifiers at different levels of a tree can effectively work
together to reveal the correlations among labels. A multilabel
classification can then be obtained by evaluating the node
classifiers in a simple top-down fashion.

We examine the ML-Tree method on 11 real data sets
from different domains and compare with six well-established
multilabel learning algorithms in the experiments, that is,
binary relevance (BR), classifier chain (CC), multilabel k near-
est neighbor (ML-kNN), instance-based and logistic regression
(IBLR-ML), hierarchy of multilabel classifiers (HOMER), and
predictive clustering trees (PCT). We evaluate the performance
of the algorithms by using 16 different measures. We also
analyze the experimental results using Friedman and Nemenyi
tests to assess the statistical significance of the performance
differences. The experimental results highlight the effective-
ness of our proposed ML-Tree method.

The remaining sections of the paper are organized as
follows. In Section II, we describe the task of multilabel
learning and give a brief overview of the related work.
In Section III, a detailed description of our proposed method
is presented. Extensive experimental results are given in
Section IV. Conclusions are drawn and future work are
discussed in Section V.

II. BACKGROUND

In this section, we describe the task of multilabel learning
and present an overview of the methods for multilabel learn-
ing. Tsoumakas and Katakis [12] summarize the multilabel
learning methods into two groups: problem transformation
methods and algorithm adaptation methods. It is worth noting
that tree-based methods for multilabel learning are closely
related to our proposed method. Therefore, in this section we
also review a number of well-known tree-based methods for
multilabel learning. An extensive review on multilabel learning
is found in [14].

A. Task of Multilabel Learning

Let X = Rd be the d-dimensional instance space and
Y = {1, 2, . . . , q} be the label space with a finite set of
q possible labels. We can distinguish two types of multi-
label learning tasks: multilabel classification and multilabel
ranking. The task of multilabel classification is to learn
a function f : X × Y → {0, 1} from a given data
set {(x1, Y1), (x2, Y2), . . . , (xm , Ym)}, where xi ∈ X is an
instance, and Yi ⊆ Y is a set of labels {Yi,1, Yi,2, . . . , Yi,q } ∈
{0, 1}q . The task of multilabel ranking is to learn a scoring
function s : X × Y → R that assigns a real number
indicating the relevance of an instance to a class label. The
score s(x, l) corresponds to the relevance of label l to instance
x . The main product of the learning algorithms is a ranking
of class labels ranks(x, l) ordered by the scores of the class
labels.

B. Problem Transformation Methods

A single-label problem can be regarded as a degenerated
problem of multilabel learning, thus it is natural to solve a

multilabel problem by decomposing it into a set of single-
label problems. Traditional supervised learning techniques can
be applicable to the decomposed single-label problems. There
are three types of problem transformation methods: binary
relevance (BR), label powerset (LP) and pair-wise meth-
ods (PW). Suppose the number of labels of a multilabel
problem is up to q . BR uses the one-against-all strategy to
convert the multilabel problem into q binary classification
problems [13]. However, it supposes all the binary classifi-
cation problems are independent and does not consider label
correlations. The LP method is to transform the multilabel
problem into a single multiclass problem with 2q labels using
the power set of labels as the set of possible labels [13].
All possible label subsets from the original multilabel space
are represented in the new single-label space. In this way,
LP-based methods directly take the label correlations into
account. Notwithstanding, the drawback is that the space of
possible label subsets can be very large. The PW method
learns q · (q − 1)/2 classifiers that cover all pairs of labels.
Each classifier is learnt using the samples of the first label
as positive examples and the samples of the second label as
negative examples. All classifiers are then combined to make
predictions by majority voting method. PW incurs the heavy
computational cost since all possible pairwise classifiers are
included.

C. Algorithm Adaptation Methods

The algorithm adaptation methods are able to handle
multilabel data directly by extending and customizing existing
machine learning algorithms. A number of algorithm adap-
tation methods for multilabel learning have been proposed,
such as svm [5] kNN [9], neural networks [6], probabilis-
tic generative models [4], maximum entropy methods [15],
maximal margin methods [3], graphical models [16], and
random decision tree [17]. One of the most popular methods
is the BOOSTEXTER algorithm proposed by Schapire and
Singer [1]. It includes two boosting extensions: AdaBoost.MH
and AdaBoost.MR. AdaBoost.MH is designed to minimize
the Hamming loss, and Adaboost. MR is developed to find
a hypothesis that places the correct labels at the top of
the ranking list. Multilabel k-nearest neighbor (ML-kNN) is
proposed by Zhang and Zhou [9]. It extends the lazy/instance-
based learning algorithm, kNN, for multilabel learning, adopts
the label prior probabilities obtained from each instance’s k
nearest neighbors, and then uses maximum-a-posterior (MAP)
principle to determine the relevant labels. Recently, Cheng
and Hüllermeier [18] unify the instance-based learning and
the logistic regression (IBLR-ML) for multilabel classifica-
tion. Their basic idea is to consider the information derived
from instances similar to a query instance as the features
of that instance; thereby, to some extent, blurring the dis-
tinction between instance-based and model-based learning.
Zhang and Zhou [6] develop the BP-MLL algorithm which
adapts the back-propagation neural network algorithm for
multilabel learning. The main difference is that it considers
multiple labels with the introduction of a new error function.
Elisseeff and Weston [5] propose a ranking approach for
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multilabel learning based on SVM algorithm where they use
the average fraction of incorrectly ordered pairs of labels as
cost function.

D. Tree-Based Methods

The methods that adapt the tree structure for the task of
multilabel learning are referred as the tree-based methods.
Clare and King [7] propose the ML-C4.5 algorithm which
adapts the C4.5 algorithm for multilabel data by modifying
the formula of entropy calculation. Comité et al. [2] extend
an alternative decision tree to handle multilabel data, where
the AdaBoost.MH algorithm proposed by Schapire and
Singer [1] is employed to train the multilabel alternating
decision trees. Blockeel et al. [19] propose the concept
of predictive clustering trees (PCTs). Vens et al. [20]
introduce several approaches for the PCTs algorithm to
hierarchy multilabel classification where instances may
belong to multiple classes and these classes are organized
in a hierarchy. Kocev et al. [21] consider two ensemble
learning techniques, bagging and random forests, and apply
them to PCTs for multilabel learning. Tsoumakas et al. [23]
propose the HOMER algorithm to handle data sets with a
large number of labels. HOMER partitions the whole label set
into disjointed subsets. The partition process is implemented
by a balance clustering algorithm. Bengio et al. [24]
put forward an algorithm for learning a tree structure of
classifiers by optimizing the overall tree loss. This algorithm
is originally proposed for multiclass problem, but its way
of constructing a label tree is also applicable to multilabel
problem. Punera et al. [25] develop a new technique that
extracts a suitable hierarchical structure automatically from
a corpus of label documents. Deng et al. [26] present a
novel approach to learn a label tree for learning a large-scale
classification with many classes efficiently. Madjarov and
Gjorgjevikj [27] build decision trees for multilabel
classification, where the leaves contain SVM-based classifiers
to provide multilabel predictions. Fu et al. [28] construct a
tree structure of the labels to describe the label dependency
in multilabel data. Cesa-Bianchi et al. [29] study the
hierarchical classification problem and introduce a refined
evaluation scheme to turn the hierarchical SVM classifier
into an approximated Bayes optimal classifier. They
also study the problem of hierarchical classification in a
taxonomy that allows classifications to be associated with
multiple and/or partial paths. They further propose a new
incremental algorithm to learn classifier for each node of the
taxonomy [30]. Bi and Kwok [31] provide a novel hierarchical
multilabel classification algorithm which can be used on both
tree and DAG structure hierarchies. Zhang and Zhang [32]
use a Bayesian network structure to encode the conditional
dependencies of the labels and the feature set efficiently, with
the feature set as the common parent of all labels. In this
network, multilabel learning is decomposed into a series of
single-label classification problems. Zhang and Zhang [32]
describe the multilabel problem from the perspective of the
Bayesian probability and classify the multilabel learning
methods into the first-order, the second-order, and high-order
approaches on the basis of the order of label correlations in a

Fig. 1. Example to illustrate the process of building a hierarchical tree
model. hi : the one-against-all SVM classifiers learnt at each node. Dash lines:
the decision boundaries of hi . b: the predictive label vector indicating the
predictive labels of a node. p: the class purity vector representing the purity of
the classes of a node. In the example, we set λ = 0.8, meaning that the classes
with purity value pv (l) ≥ 0.8 are predictive labels and their corresponding
value of bv (l) are set to be 1. The predictive labels of a parent node will be
transferred to its child nodes.

system. Our proposed method is different from these previous
works in the way that the predictive labels are formulated
at each node of the hierarchy. The predictive labels are
shared across the hierarchical tree structure and transferred
in a top-down manner. With this assumption, the original
multilabel classification is built into the nested single-label
prediction problems in a hierarchical way, which preserves
the correlations between multiple labels.

III. ML-TREE FOR MULTILABEL LEARNING

A. Hierarchical Tree Model

In this paper, we develop a new hierarchical tree algorithm
for multilabel learning, that is, ML-Tree. A hierarchical tree
is constructed where the root node corresponds to all the
instances in the training data set D, the instances are recur-
sively partitioned into smaller subsets while moving down the
tree. Each internal node v contains the union of the training
instances of its child nodes, Dv = ∪k

i=1 Dci , ci ∈ children(v)
and Dci ∩ Dc j = ∅, i 	= j for i, j = 1, 2, . . . , k. At each
node v of the tree, one-against-all SVM classifiers are used to
partition the corresponding data set Dv into disjoint subsets.
This process continues until the remaining instances at the
node cannot be further split by the induced classifier.

Fig. 1 shows an example of a hierarchical tree constructed
from a multilabel data set containing three labels in 2-D feature
spaces. Each node v contains a set of one-against-all SVM
classifiers hv . Dash lines at the node: the decision boundaries
given by the classifiers. The top node contains all training
data. At the top level, the whole data set is partitioned into
three data subsets {A, B, C}. The second subset B is further
partitioned into two subsets {B1, B2} at the bottom level.

Each node in the tree contains two important components,
that is, class purity vector and predictive label vector (see
Fig. 1), for handling multilabel learning in training phase
as well as prediction in testing phase. Suppose we have a
set of multilabel training instances Dv at node v, xi ∈ Dv



WU et al.: TREE-STRUCTURE-BASED APPROACH TO MULTILABEL LEARNING 433

is an instance, and the class membership vector of xi is
Yi = {Yi,1, Yi,2, . . . , Yi,q } ∈ {0, 1}q .

Definition 1: The class purity vector (CPV), denoted as p,
is a vector with real values to measure the purity of the class
labels at a node. The purity of a class l at a node is defined
as the proportion of training instances belonging to class l at
the node.

The CPV of node v is denoted as pv , and it is given by

pv (l) =

∑

xi∈Dv

Yi,l

|Dv | (1)

where pv (l) is the lth component (for class l, 1 ≤ l ≤ q) of
pv with values in the range of [0, 1], and |Dv | is the total
number of instances in Dv .

The class purity pv(l) can be used to estimate the prior
probability that an instance at node v with the class l.
If pv(l) is larger than a threshold, it implies that class l
is the proper label for instances of node v. In this case,
we call class (label) l a predictive label; otherwise, we call
class (label) l a nonpredictive label with respect to node v.
A nonpredictive label indicates that we cannot determine
whether, at node v, the instances belong to class l or not.
This decision is determined by the child nodes of v.

Definition 2: The PLV, denoted as b, is a vector with
boolean values indicating the membership of predictive labels
at a node, where its lth component b(l) (1 ≤ l ≤ q) takes
the value of 1 if class l is a predictive label (b(l) = 1) and 0
otherwise (b(l) = 0).

The PLV of node v is denoted as bv , and each of its
components is computed as follows:

bv(l) =
{

1, if bv ′(l) = 1 or p(l) ≥ λ

0, otherwise
(2)

where λ (0 ≤ λ ≤ 1) is a threshold, and v ′ = parent (v) is the
parent node of node v. The predictive label of parent node v ′
is transferred to its child nodes, that is, bv (l) = 1 in the case
that bv ′(l) = 1.

PLV plays an important role in our ML-Tree method. In the
training phase, predictive labels can be used as a filter to select
the individual one-against-all SVM classifiers for learning at
each node, that is, only each of the nonpredictive labels will be
trained with a one-against-all SVM. In the testing phase, the
multilabel classification for an unseen instance x is obtained
according to the predictive labels of the leaf node that x
goes through.

PLV has the following property. If the instances at a node v
are labeled with a class l, all instances at each child node of
v will inherit the label l. In our tree model, we incrementally
learn PLVs along a decision path from the root of the tree
down to a leaf node. As a result, a PLV at a leaf node is
the combination of the predictive labels of all the nodes in
the path. This approach enables us to model the multilabel
classification problems in a hierarchical form, making it easy
to exploit the correlations among labels in multilabel learning.

As shown in Fig. 1, each node is associated with a PLV.
The leaf nodes B1 and B2 are labeled with y1, y2 and y2, y3,
respectively. Their parent node B is labeled with class y2.

TABLE I

PSEUDOCODE OF THE LEARNING ALGORITHM

TABLE II

PSEUDOCODE OF THE SPLITTING TREE ALGORITHM

TABLE III

PSEUDOCODE OF THE STOPPING TREE ALGORITHM

In this case, on one hand, the label of the parent node B
(i.e., class y2) is automatically transmitted to its child nodes
B1 and B2. On the other hand, we can examine the purity
of the classes, that is, p, for the determination of PLVs.
In this example, B1 has large purity with respect to class y1
(i.e., p(1) = 1.0 at the node B1), while B2 has large purity
with respect to class y3 [i.e., p(3) = 1.0 at the node B2].
Therefore, B1 is further labeled with class y1, and B2 is further
labeled with y3.

B. Learning Algorithm

The proposed ML-Tree algorithm is shown in Tables I–III.
ML-Tree follows the divide-and-conquer paradigm of
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algorithm design to construct a hierarchical tree. The algorithm
takes a set of training instances D as input. The main loop
(Table I) starts from a node v corresponding to the data D.
Then we compute the values of pv and bv for node v, and find
the best partition P for D by calling the splitting function in
Table II. If such a partition can be found and the stopping
criteria given in Table III are not satisfied, the algorithm will
call itself recursively to create a new node for each outcome
of the partition P . If any of the stopping criteria is satisfied,
the algorithm creates a leaf and computes the corresponding
CPV and PLV.

The ML-Tree algorithm uses the splitting function in
Table II partition the data D. First, a set of one-against-
all SVM classifiers is learnt at the node, each one dealing
with a class l of a nonpredictive label, that is, bv (l) = 0
and pv (l) > 0. Here, the PLV is used to select the individual
one-against-all SVM classifiers for learning at each node.
Specifically, we employ linear SVM as the base-classifier in
this paper. After the construction of the SVM classifiers, each
training instance in current node assigned a label correspond-
ing to a child node (see Fig. 1) by the SVMs with the winner-
takes-all strategy that an instance is classified to one class
with maximum confidence score over the individual classifiers.
If the scores of two (or more) of the classifiers are equally
maximal, we classify the instance to the class that has maximal
prior probability. The prior of the classes to node v is given
in pv .

The ML-Tree algorithm uses three stopping criteria in
Table III to determine when to stop growing the tree. They
include examining the purity of the classes, the values of the
predictive labels, and the outputs of the trained classifiers.
Specifically, the first stopping criterion tests the purity of the
instances in a node. If all instances at the node are labeled
with the same single label or the same combination of labels,
it is a leaf node.

Stopping Criterion 1: A node is a leaf node if all the
instances at the node are pure.

Another way is to test the predictive label indicator
vector bv of the node v. If all the components of bv are with
value 1, the node is a leaf node.

Stopping Criterion 2: A node is a leaf node if all the classes
are identified as predictive labels.

We can check the stopping criteria 1 and 2 before learning
hv for the node v. If the first two stopping criteria are satisfied,
we stop growing the tree at that node. Otherwise, the proposed
algorithm continue to train one-against-all SVM classifiers to
partition the instances into different child nodes accordingly.
If all the instances are partitioned into one child node, the
node is a leaf node.

Stopping Criterion 3: A node is a leaf node if the data
cannot be partitioned any further using the classifiers.

C. Multilabel Prediction

A algorithm outputs a prediction vector hx = (hx(1),
hx (2), . . . , hx (q)) with boolean values is used for multilabel
prediction to indicate the class membership of an unseen
instance x , and a vector sx = (sx(1), sx (2), . . . , sx (q))

with real values to quantify the confidence that the instance
x belongs to the predicted classes can be obtained from the
tree. The prediction procedure starts with the one-against-all
SVM classifiers hroot of the root node and follows a recursive
process navigating an unseen instance x to hv of a child
node v based on the winner-takes-all decision rule. Eventually,
the unseen instance x traverses to a leaf node v, and then
x is assigned to the predictive labels of that node, that is,
hx (l) = bv (l). To make a relevant confidence estimation for
x , we consider a scoring vector rx = (rx (1), rx (2), . . . , rx (q))
which is defined as the integration of the CPV along a
decision-path from the root to the leaf node where x ends.
Let V be a set of nodes in the decision-path, v ∈ V be a node
in the path, and pv be the CPV of node v where pv(l) is
the lth component of pv . We define rx (l) = ∑

v∈V pv(l) and
normalize rx (l) by sx(l) = rx(l)/

∑q
l=1 rx(l). The resulting

sx (l) indicates the confidence of label l for x .

D. Tuning the Parameter λ for Multilabel Prediction

ML-Tree algorithm constructs a hierarchical tree model
using one-against-all SVM classifiers at each node for
multilabel prediction. The prediction at each node of ML-Tree
is based on the threshold parameter λ in (2). The value of λ
is learnt based on cross-validation approach on the training
set. In the experiments, we evaluate the value of λ between
0.5 and 1 with an increment of 0.05. When tuning the λ value
best suited to a specific data set, a whole tree is grown using
each λ value. The best λ value to minimize the hamming loss
function of the constructed tree model is selected.

We note that it is desirable to recompute the best λ value
after each split of the data, as it is likely that we have a
new data distribution after a split. Recomputing λ is more
appropriate than using fixed λ approach in the data sets with
drastic changes in data distribution as the splitting continues.
However, the computational time of recomputing λ is consid-
erably high. Suppose we have K nodes for the whole tree, and
λ has 10 possible values, then the number of λ evaluated in the
cross-validation analysis is 10K . The complexity is exponential
with respect to the number of nodes in the tree. Such time cost
is not practical for multilabel learning applications. Hence, we
do not recompute λ in our tree model.

In our paper, we investigate the performance of our hier-
archical tree method using fixed λ optimally tuned by cross
validation on the training set. The experimental results show
that our method is competitive against other multilabel learn-
ing methods on 11 multilabel data sets (see Section IV for
detailed analysis).

E. Computational Complexity

Given a training data set containing m instances that are
collected from the label space with q possible labels, the
resulting multilabel learning problem is cast into a series of
binary classification problems at each node. The complexity
at each node depends on the number of learning labels that
are required to construct classifiers to obtain the child nodes
branch-out. Given that the number of the branches at the root
node is q , in the worst scenario, the nodes in the second layer
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would have q −1 branches, q −2 in the third layer, and so on.
Hence, we have q! terminal nodes. The total number of nodes
in the tree will be 1+q +q(q −1)+q(q −1)(q −2)+· · ·+q!,
leading to the complexity of O( f (m)(e−1)q!), where f (m) is
the complexity of the SVM classifier at each node with respect
to the number of instances m. The current state of the art
algorithms for training SVM classifier have a time complexity
scaling close to O(m2) [22].

To simplify the analysis, we assume that the hierarchy is a
complete k-ary tree of depth d reported in [23], that is, the
average branch-out is k and the average depth of the tree is
d . It indicates that all internal nodes have k child nodes and
all terminal nodes are at the bottom layer. The cost of one
SVM classifier is f (|Dv |) ≈ O(|Dv |2) with respect to node
v, and we have k classifiers at the node, that is, O(k|Dv |2),
then the cost at the root node is km2, while at the second
layer we have k additional cost of k(m/k)2, and k2 additional
cost of k(m/k2)2 at the third layer, and so on. Thus, k(m2 +
m2/k + m2/k2 + · · · + m2/k p) for learning all the classifiers
in the tree. This leads to a total cost of O(2km2) as a sum of
a geometric series when the depth of the tree p approaches
infinity.

In general, the overall complexity of ML-Tree depends on
the number of instances and the average number of branch-
outs. In real world applications, most of the nodes become
terminal at very early stage or have much lower number of
branch-outs. The nodes at the lower levels of the tree train their
classifiers using only |Dv | samples at the node v (|Dv | < m).
On the other hand, the labels identified as predictive labels
do not need further processing when moving down the tree.
We expect the number of branch-outs in the child nodes to be
smaller than those of their parent nodes. So the complexity
of training the classifiers at the lower levels of the tree is
expected to fall. In fact, an accurate complexity analysis is hard
to achieve, because it depends on many factors. One of the
key factors is the average number of labels per example (label
cardinality [13]). The larger this statistic is, the higher the
expected complexity of growing a tree will be. For empirical
analysis of the complexity of growing a tree on data sets with
respect to label cardinality, we refer to Section IV-G.

IV. EXPERIMENTS

A. Data Sets

We use 11 multilabel data sets in our experimental study.
These data sets are benchmark data sets from different appli-
cation domains. The data are originally split into training
and testing set. We use the training and test split in the
experiments. The characteristics of the data sets are summa-
rized in Table IV. The multilabel data sets are available at
http://mulan.sourceforge.net/datasets.html.

The data sets are from various domains, including biology,
multimedia and text categorization. Reuters21578 consists
of three different data sets: Reuters(10), Reuters(21), and
Reuters(90). These three data sets are the subsets of 10, 21, and
90 classes from the Reuters21578 collection. The Ohsumed is
a data subset of the 24 MeSH disease categories. For more
information about the data sets, please refer to [33].

TABLE IV

DESCRIPTION OF THE MULTILABEL DATA SETS IN TERMS OF NUMBER OF

TRAINING (#TR.E.) AND TEST (#T.E.) EXAMPLES, THE NUMBER OF

FEATURES (d ), THE TOTAL NUMBER OF LABELS (q ),

AND CARDINALITY (lc ). THE PROBLEMS ARE

ORDERED BY THEIR COMPLEXITY CALCULATED

AS #TR.E. ×d × q

B. Compared Algorithms and Parameter Instantiation

In this paper, we compare the ML-Tree method with six
multilabel algorithms, namely binary relevance (BR), classifier
chain (CC) [34], multilabel k nearest neighbor (ML-kNN),
IBLR-ML, HOMER, and PCT. Our comparative study is
based on the MULAN library [35]1 and the CLUS system.2

The MULAN library is used for BR, CC, ML-kNN, IBLR-
ML, and HOMER. The CLUS system is used for PCT. The
experiments are conducted on a AMD 3.4 GHz machine with
64 GB RAM running Windows Server 2008. BR is a problem
transformation method, CC involves binary classifiers linked
along a chain. HOMER constructs a hierarchy of the multiple
labels and a classifier for the label sets in each node of
the hierarchy. Our proposed ML-Tree method uses a base-
classifier at each node in the tree generation. These methods
use base-classifiers for solving the partial binary classification
problems. For fair comparison, SVM with linear kernel is used
as the base-classifier for BR, CC, HOMER, and ML-Tree. We
adopt the implementation in the LIBSVM library [36] to learn
SVM classifiers.

In the experiments, the parameters of the learning
algorithms are tuned in the experiments using fivefold cross
validation on the training set. The parameter values of the
algorithms yielding the best average hamming loss in the
fivefold cross validation are chosen. After determining the best
parameters for each method on every data set, the classifiers
are trained with the best parameters on the whole training set
and evaluated on the corresponding testing set. We describe
the parameter settings of the learning algorithms as follows.
The number of neighbors k in the ML-kNN and IBLR-ML is
determined from 5 to 30 with an increment of 5. The number
of clusters in the HOMER is determined in the range of 2-6.
The values considered for penalty C in SVMs of BR, CC,
HOMER, and ML-Tree are 2−5, 2−3, . . . , 23. The exception
to this is the tmc2007 data set where the penalty C is simply
set to 2−5 because of its high computational complexity.
The prediction at each node of ML-Tree is based on a

1http://mulan.sourceforge.net
2http://clus.sourceforge.net



436 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 3, MARCH 2015

TABLE V

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF HAMMING LOSS ↓

TABLE VI

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF ACCURACY ↑

threshold parameter λ. We tune λ from 0.5 to 1 with an incre-
ment of 0.05. When tuning the parameter λ and C for ML-
Tree, the whole tree is grown by using the evaluated parameter
values at each node. We then select the best parameter values
to optimize the hamming loss performance of the constructed
tree model. Multilabel predictions of BR and CC can also be
made from a threshold parameter t . Specifically, given a vector
wi ∈ R

q of real-valued confidence outputs for an unlabeled
instance xi , a multilabel prediction Ŷi = {Ŷi,1, Ŷi,2, . . . , Ŷi,q }
of xi can be obtained under a threshold function such that:
Ŷi, j = 1 if wi, j ≥ t , and Ŷi, j = 0 otherwise [34]. In
the experiments, the threshold t is tuned in the range from
0.5 to 1 with an interval of 0.05 for BR and CC. We find that
this threshold selection method is more effective than using
an arbitrary threshold, for example, 0.5. Note that this setup
relies on the output of probability estimates of SVM classifiers.
The one-against-all SVM with probability output has been
implemented in the LIBSVM library. We set the LIBSVM
with prediction options −b1 to learn SVM classifiers with
probability outputs.

C. Performance Measures and Statistical Evaluation

With respect to the outputs of learning algorithms, the evalu-
ation measures can be grouped into two categories: bipartition-
based and ranking-based. The bipartition-based measures are
based on the comparison of the predicted predictive labels
with the ground-truth predictive labels. The bipartition-based
measures can be further divided into example-based and
label-based. The example-based measures are based on the
average difference between the actual and the predicted set
of labels over the examples. The label-based measures are
based on the predictive performance for each label sepa-
rately such that the performance over all labels are averaged.

TABLE VII

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF PRECISION ↑

TABLE VIII

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF RECALL ↑

TABLE IX

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF F1 SCORE ↑

The ranking-based measures compare the predicted ranking of
the label with the ground truth ranking. In our experiments, we
use six example-based evaluation measures (Hamming loss,
accuracy, precision, recall, subset accuracy, and F1 score), six
label-based evaluation measures (microprecision, microrecall,
microF1 score, macroprecision, macrorecall, and macroF1
score) and four ranking-based measures (one-error, coverage,
ranking loss, and average precision). A detailed description of
these evaluation measures can be found in [33].

As multiple algorithms are compared on multiple data sets,
we follow the two-step statistical test procedure recommended
by Demšar [37] to analyze the experimental results. The test
procedure consists of a Friedman test of the null hypothesis
that all learners have equal performance and a Nemenyi test to
compare learners in a pairwise way. All tests are based on the
average ranks shown in the bottom row of Tables V–XXII.
The results with respect to the post hoc tests are visu-
ally presented with diagrams (as suggested in [37]) in
Figs. 2–4. The horizontal axis with value 1 − x shows the
average rank of a method. The lowest(best) rank is at the
right-most side of the axis. The algorithms that do not differ
significantly (at the significantly from each other level of
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TABLE X

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF SUBSET ACCURACY ↑

TABLE XI

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF MICRO PRECISION ↑

TABLE XII

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF MICRO RECALL ↑

TABLE XIII

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF MICROF1 ↑

p = 0.05) are connected by a bold horizontal line.

D. Results on the Example-Based Measures

In this section, we present the results from the example-
based evaluation measures, that is, hamming loss, accuracy,
precision, recall, F1 score, and subset accuracy. The example-
based measures are commonly used for multilabel classifica-
tion. The comparative results of all the algorithms are shown
in Tables V–X. The uparrow ↑ (downarrow ↓) indicates that
a larger (smaller) value is more appreciated for a specific
evaluation measure. The number in brackets is the rank of

TABLE XIV

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF MACRO PRECISION ↑

TABLE XV

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF MACRO RECALL ↑

TABLE XVI

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF MACROF1 ↑

TABLE XVII

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF ONE ERROR ↓

the method. For each data set (on each row of the tables),
the methods are ranked in a descending order based on
their performance. The numbers in boldface indicate the best
ranking results. The last row in the table presents the average
ranks across the problems. The graphical presentation results
of the Nemenyi post hoc tests based on the average ranks are
shown in Fig. 2.

In the experiment, we compare our proposed ML-Tree
method with different multilabel learning methods (BR,
CC, ML-kNN, IBLR-ML, HOMER, and PCT) and use a
wide range of example-based measures to evaluate their
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TABLE XVIII

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF COVERAGE ↓

TABLE XIX

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF RANKING LOSS ↓

TABLE XX

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF AVERAGE PRECISION ↑

TABLE XXI

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF TRAINING TIME (IN SECONDS) ↓

performances on 11 data sets. We can see from Fig. 2 that the
best performing methods for each performance measure are
ML-Tree and HOMER, followed by CC and BR. Both
ML-Tree and HOMER construct a hierarchy of tree derived
from training classifiers at each node. The results of the
experimental comparison revealed that a hierarchy of classi-
fiers improves the prediction performance against a single BR
classifier with independent classifiers.

We find that ML-Tree performs the best in terms of preci-
sion. On the other hand, HOMER performs the best in terms
of recall. Precision and recall are two different quantitative

TABLE XXII

PERFORMANCE OF THE MULTILABEL LEARNING ALGORITHMS

IN TERMS OF TESTING TIME (IN SECONDS) ↓

measures. Precision is the fraction of predicted labels that
are also relevant (evaluating the accurate of the prediction),
while recall is the fraction of relevant labels that are predicted
correctly (evaluating the completeness of the prediction). This
result indicates that the predictions from ML-Tree are more
accurate than those from HOMER, while the predictions from
HOMER are more complete than the ones from ML-Tree.
A reasonable explanation for this finding is that, HOMER uses
multiple-leaf labeling method to classify a new instance x .
The union of the predicted labels in multiple leaves is used
for classification purpose, and therefore the predicted labels
are more complete. The ML-Tree uses decision-path labeling
method that combining the predictive labels from the root to a
leaf to make multilabel prediction. The prediction is obtained
by a threshold function that is optimally tuned on the training
set and therefore, is more accurate.

A closer examination of the results in Fig. 2 shows that CC
and BR have average performance on the example-based eval-
uation measures. BR outperforms CC only on the hamming
loss. The situation is reversed on the other example-based
measures where CC and BR rank third and fourth, respectively,
when evaluated by accuracy, precision, subset accuracy, and
F1 score. This result indicates that CC and BR have similar
performances, but the CC method is generally better.

Even though the Friedman test suggests that there are
significant differences between the methods, most of the
pairwise comparisons remain statistically nonsignificant (at a
significance level of 5%). Nevertheless, the overall picture
taken from the experiments is clearly in favor of ML-Tree
and HOMER. The performances of ML-Tree and HOMER
are often significantly better than those of PCT, ML-kNN, and
IBLR-ML. ML-kNN and PCT perform poorly when evaluated
by all evaluation measures and the later is the worst method
among the seven multilabel learning algorithms. PCT is not
competitive because the algorithm is not originally proposed
for multilabel problems. It is not reliable for multilabel
learning due to the inadequacy of modeling label correlations.

We further analyze the performance of the ML-Tree with
CC and BR method. We can see that ML-Tree is better than
CC and BR with respect to accuracy, precision, recall, F1
score, and subset accuracy. On the other hand, BR performs
best in terms of hamming loss. Recent studies [38] show that
BR is well tailored for hamming loss. The results in our
experiments are in concordance with these studies.

In summary, the results of the experimental comparison
illustrate the competitiveness of the ML-Tree method against
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Fig. 2. Graphical presentation of results from the Neminyi post hoc test at 0.05 significance level for the example-based measures. (a) Hamming loss.
(b) Accuracy. (c) Precision. (d) Recall. (e) Subset accuracy. (f) F1 score. (g) Microprecision. (h) Microrecall. (i) MicroF1. (j) Macroprecision. (k) Macrorecall.
(l) MacroF1.

Fig. 3. Graphical presentation of results from the Neminyi post hoc test at 0.05 significance level for the ranking-based measures. (a) One-error. (b) Coverage.
(c) Ranking-loss. (d) Average precision.

other multilabel learning methods. ML-Tree improves the
predictive performances of the conventional BR method and
PCT decision tree method.

E. Results on the Label-Based Measures

The label-based measures include microprecision, microre-
call, microF1, macroprecision, macrorecall, and macroF1. The
results for the statistical significance test are given in Fig. 2,
while the complete results are shown in Tables XI–XVI. For
the microF1 results, the best performing methods are CC, BR,

HOMER, and ML-Tree. For the macroF1 results, the best
performing methods are CC, HOMER, ML-Tree, and BR.
We further compare BR with HOMER using the label-based
measures. BR performs better when evaluated by precision
(microprecision and macroprecision), while HOMER performs
better with respect to recall (microrecall and macrorecall). The
results indicate that HOMER is more complete, and BR is
more accurate. The predicted labels by HOMER cover more
ground-truth labels. On the other hand, the labels predicted by
BR are more likely to be included in the ground-truth labels.
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TABLE XXIII

TRAINING TIME AND HAMMING LOSS OF ML-TREE AND ML-TREE+ ON

MULTILABEL DATA SETS

TABLE XXIV

COMPLEXITY AND PERFORMANCE OF ML-TREE IN TERMS OF AND

HAMMING LOSS (HAM.) ON THE scene DATA SET

F. Results on the Ranking-Based Measures and
Time Efficiency Measures

The ranking-based measures are one-error, coverage, rank-
ing loss, and average precision. The results are given in Fig. 3
and Tables XVII–XX. The best performing method is BR,
followed by CC and ML-Tree. ML-Tree is the second best in
terms of one-error and the third best in terms of the other two
measures (ranking-loss and average precision). Even though
the HOMER approach is able to produce good results for
the example-based measures, it performs poorly across all
ranking-based evaluation measures. This result makes sense as
it is shown in recent studies [34] that even good approaches
are not able to outperform all other methods in every measure.
The evaluation measures used in the experiments assess the
learning performance from different aspects and one algo-
rithm rarely outperforms another algorithm on all criteria,
for example, a method that is optimal for instance hamming
loss usually does not perform well in subset accuracy or
one-error.

We also report the computation times (training time and test-
ing time) of each comparing algorithm. The results are given in
Tables XXI and XXII. The results show that PCT is the most
efficient method, followed by ML-kNN and IBLR-ML. ML-
Tree has the largest running time in the training phrase mainly
due to the high computational cost in learning a hierarchy of
classifiers. It is interesting to compare the running time of
this method with the BR method as the tree model built in the
root of the tree for the ML-Tree method is exactly the same
as BR model. We see that the computational complexity of
the ML-Tree could be comparable to those of the BR method
for data sets with small label cardinality (e.g., the emotions
and scene data sets). However, in the case of larger data
sets with higher label cardinality, BR is much faster than
ML-Tree.

TABLE XXV

SAME AS TABLE XXIV, BUT FOR THE tmc2007 DATA SET

TABLE XXVI

SAME AS TABLE XXIV, BUT FOR THE corel5k DATA SET

ML-Tree has two parameters to tune in the model: the SVM
parameter C and the threshold parameter λ. Optimum selection
of these two parameters increases the computational cost of
the method. In an attempt to reduce the computational com-
plexity of ML-Tree, we consider a simplified implementation
of the ML-Tree method. For the simplified ML-Tree, called
ML-Tree+, we set the parameter C simply to C = 2−5

as the default, and optimally tune the threshold parameter
λ in building the tree model. We perform experiments to
compare the performance of the two implementations of our
proposed method (ML-Tree and ML-Tree+). Table XXIII pro-
vides the hamming loss and training time (in seconds) results
for the two methods. Table XXIII shows that ML-Tree+ is
computationally more efficient than ML-Tree. In additional,
ML-Tree+ is able to deliver comparable performance against
ML-Tree. The performance of the SVM classifier with the
default setting for parameter C learnt at each node of the
ML-Tree+ may not be optimal, but growing a hierarchical
of nodes and tuning an appropriate value for λ ensures good
performance. The implementation of ML-Tree under optimal
tuning C and λ has an advantage in classification performance.
However, searching best value for the SVM classifiers at
the nodes requires additional cost, and the computational
complexity scales linearly with respect to the number of
class labels and the number of nodes in the tree. When
handling multilabel data sets with large label cardinality, the
computations would become expensive. The choice of an
appropriate implementation of ML-Tree essentially depends on
the tradeoff between computational requirements and accuracy.

G. Parameter Study

Our experiment indicates that how different values of the
parameter λ affect the construction time and the geometry of
the resulting tree (maximum/average depth of the tree, the
number of internal and leaf nodes, average branch-out) in the
proposed method. We analyze the results of three data sets
with small, medium, and large label cardinality lc. We expect



WU et al.: TREE-STRUCTURE-BASED APPROACH TO MULTILABEL LEARNING 441

TABLE XXVII

LABEL RELATIONSHIP ON THE FIRST SYNTHETIC

DATA SET, l1 = l2 AND l3 = l4

TABLE XXVIII

LABEL RELATIONSHIP ON THE SECOND SYNTHETIC

DATA SET, l1 = l2 ∨ l3 ∨ l4

that the greater this statistic, the higher the complexity of the
proposed method. The three data sets are scene (lc = 1.07),
tmc2007 (lc = 2.16), and corel5k (lc = 3.52). The results for
the constructed trees with different parameter λ settings for
different data sets are given in Tables XXIV–XXVI.

As shown in the tables, the best λ values for scene, tmc2007,
and corel5k are 0.65, 0.60, and 0.80, respectively. The best
parameter value is dependent on the evaluated data set. The
value of the parameter λ should be properly chosen by cross
validation on the training set. In our experiments, we tune
the value of parameter λ from 0.5 to 1 using cross-validation
approach on the training set. We find that the label cardinality
lc is an important factor affecting the complexity of the
resulting tree. As expected, the average depth, the number
of nodes, and the time of constructing a tree increase with
lc. Thus, we expect that the greater the label cardinality, the
higher the complexity of the constructed tree.

H. Label Relationship

We use co-occurrence of predictive labels at the leaf nodes
to estimate the label relationships. We construct a m-by-q
matrix Q where m is the number of leaf nodes and q is the
number of possible labels. The i th row of Q is the predictive
label indicator vector b attached to the i -th leaf node. The
entries taking the values of 1 correspond to the predictive
labels in the leaf node. The i th column of Q is the distribution
of label li extracted from the leaf nodes of the tree. The label
relationship of two labels li and l j can be measured using the
φ-coefficient defined as follows:

φ(i, j) = (AD − BC)/
√

(A + B)(C + D)(A + C)(B + D)

(3)

where A, B , C , and D are the frequency counts of li ∧ l j ,
li ∧ ¬l j , ¬li ∧ l j , and ¬li ∧ ¬l j , respectively. Our experiment
examines whether our proposed algorithm can generate rea-
sonable label relationships. As we have not given ground-truth
label relationship for real-world data so far, we study two syn-
thetic data sets [39] that we know the exact label relationship.

TABLE XXIX

EXPERIMENTAL RESULTS ON NUS-WIDE DATA

SET IN TERMS OF DIFFERENT

EVALUATION MEASURES

In the experiments, we use them to check the validity of our
proposed method for capturing the label relationships. The data
sets have 10 000 instances and five labels l1 to l5. l5 is assigned
to an instance if it does not belong to l1 to l4. In the first data
set l1 = l2 and l3 = l4. In the second data set l1 = l2 ∨ l3 ∨ l4.
The label relationships for these two data sets are given in
Tables XXVII and XXVIII, respectively. The diagonals are
1.0. The last row(column) of the Tables for l5 has negative
references because l5 is assigned to an instance if it belongs
to none of l1 to l4. Table XXVII shows that the entries (1, 2),
(2, 1), (3, 4) and (4, 3) are 1.0, while Table XXVIII shows that
the entries (1, 2), (1, 3), (1, 4) have relatively large positive
values. These results are consistent with the ground-truth label
relationship.

I. Large-Scale Multilabel Classification of
Flickr Images

In this experiment, we test the performance of ML-Tree
on a relatively large-scale multilabel data set with large label
cardinality. We use a real-world Web image data set from the
NUS-WIDE data set.3 The data set has 81 ground-truth
concepts that can be used for multilabel evaluation. These
concepts include general concepts such as animal and spe-
cific concepts such as dog and cat. The data set includes
269 648 Flickr images which are separated into 161 789
training images and 107 859 testing images. As we con-
sider large label cardinality, we remove images with less
than two class labels and ground-truth concepts occurring
in less than 1% images of the data set. The remaining
set contains 26 516 training images, 17 906 test images and
44 ground-truth concepts. The label cardinality of this data
set is about 5.0.

We compare the performance of ML-Tree algorithm with
HOMER, BR, and CC. We do not empirically tune the
parameter C in the SVMs of BR, CC, HOMER, and

3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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ML-Tree. We simply use the default value C = 2−5. The
experimental results evaluated using the 16 different measures
are summarized in Table XXIX. The results are grouped
into three categories: example-based, label-based, and ranking-
based. We can see that the results are in line with our previous
observations: the best performing methods are ML-Tree and
HOMER, ML-Tree performs the best in terms of precision,
while ML-Tree performs the best in terms of recall. Inter-
estingly, ML-Tree shows consistently better performances on
ranking-based evaluation measures. The ranking-based mea-
sures include one-error, ranking loss, coverage, and average
precision. These measures offer a different perspective on the
results. The classifiers are evaluated in terms of its ability to
provide a good approximation of ranks for labels associated
with an unlabeled instance. The experimental results indicate
that ML-Tree can generate a ranking of possible labels for a
given instance such that its correct labels receive higher rank-
ing than irrelevant labels. The HOMER method only considers
the predictions on the leaves and uses relevant information
that comes from the outputs of the classifiers just above the
corresponding leaves. On the other hand, our proposed ML-
Tree approach shares the relevant information across the tree
model, where the ranking scores of the classes are obtained
by summarizing the relevance scores from the root to the
leaf node. The relevant information of the general concepts
from parent nodes propagates to the child nodes that have
specific concepts. Therefore, it may be counted multiple times
to ensure a higher chance of achieving a high rank result. Such
a relevant scoring method imposes a well impact on ranking-
based evaluation performance for the Flickr multilabel image
classification data set that contains general concepts and
specific concepts.

V. CONCLUSION

In this paper, we present a new hierarchical tree approach
(ML-Tree) for multilabel learning. The ML-Tree uses
one-against-all SVM classifiers and the transmission of predic-
tive labels at each node to grow up a hierarchical tree model.
It provides a new multilabel classification framework, where
multiple one-against-all SVM classifiers at different levels of
a tree can effectively work together to reveal the correlations
among labels and to predict the labels of an instance more
precisely. We examine the ML-Tree method on 11 real data
sets from different domains and compare it with BR, CC,
ML-kNN, IBLR-ML, HOMER, and PCT. We employ
Friedman and Nemenyi tests to assess the statistical signif-
icance of the differences in performance. The experimental
results demonstrate the effectiveness of our proposed ML-Tree
method. Note that ML-Tree has the largest running time in the
training phase, which is mainly due to the high computational
cost in learning a hierarchy of classifiers. In the future work,
we will consider more efficient approaches to construct the
tree to reduce the complexity of the algorithm. We also plan
to investigate the sensitivity of the hierarchical tree model to
outliers in the training data and to extend the ML-Tree method
to an ensemble framework. Moreover, it will be interesting
to investigate the theoretical aspects of the proposed method

and the influence of the relations among labels on multilabel
learning.
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