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Extensions of Kmeans-Type Algorithms: A New
Clustering Framework by Integrating Intracluster

Compactness and Intercluster Separation
Xiaohui Huang, Yunming Ye, and Haijun Zhang

Abstract— Kmeans-type clustering aims at partitioning a data
set into clusters such that the objects in a cluster are compact
and the objects in different clusters are well separated. However,
most kmeans-type clustering algorithms rely on only intracluster
compactness while overlooking intercluster separation. In this
paper, a series of new clustering algorithms by extending the
existing kmeans-type algorithms is proposed by integrating both
intracluster compactness and intercluster separation. First, a set
of new objective functions for clustering is developed. Based on
these objective functions, the corresponding updating rules for
the algorithms are then derived analytically. The properties and
performances of these algorithms are investigated on several syn-
thetic and real-life data sets. Experimental studies demonstrate
that our proposed algorithms outperform the state-of-the-art
kmeans-type clustering algorithms with respect to four metrics:
accuracy, RandIndex, Fscore, and normal mutual information.

Index Terms— Clustering, data mining, feature weighting,
kmeans.

I. INTRODUCTION

CLUSTERING is a basic operation in many applications
in nature [1], such as gene analysis [2], image process-

ing [3], text organization [4], and community detection [5], to
name just a few. It is a method of partitioning a data set into
clusters such that the objects in the same cluster are similar
and the objects in different clusters are dissimilar according
to certain predefined criteria [6].

There are many types of approaches [7] to solve a
clustering problem: partitioning methods, hierarchical meth-
ods, density-based methods, grid-based methods, model-based
methods, and so on. The kmeans-type clustering algorithms
are a kind of partitioning method, which has been widely
used in many real-world applications. Most of the existing
kmeans-type clustering algorithms consider only the simi-
larities among the objects in a cluster by minimizing the
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dispersions of the cluster. The representative ones of these
algorithms include basic kmeans [8], [9], projected clustering
[10], locally adaptive clustering [11], [12], automated vari-
able weighting kmeans (Wkmeans) [6], attributes-weighting
clustering algorithms (AWA) [13], entropy weighting kmeans
(EWkmean) [4], feature group Wkmeans [14], and two-level
variable Wkmeans [15]. Amidst them, basic kmeans, the
simplest one, addresses all the selected features equally during
the process of minimizing the dispersions. However, different
features have different discriminative capabilities in real appli-
cations. For example, in the sentence London is the first city
to have hosted the modern Games of three Olympiads, the
keywords London and Olympiads have more discriminative
information than the words city and modern in sport news.
In literature, a large body of feature selection and weighting
methods has been proposed in clustering analysis [4], [6],
[10]–[15]. All these methods have the same characteristic:
the features must be evaluated with the big weights if the
dispersions of the features in a data set are small. In essence,
the discriminative capability of a feature not only relates to the
dispersion, but also associates with the distances between the
centroids, i.e., intercluster separation. As a matter of fact, inter-
cluster separation plays an important role in supervised learn-
ing methods (e.g., linear discriminative analysis) [16], [17].
Most of the existing kmeans-type algorithms, however, over-
look the intercluster separation.

In this paper, we investigate the potential framework of the
kmeans-type algorithms by integrating both intracluster com-
pactness and intercluster separation. We propose three algo-
rithms: E-kmeans, E-Wkmeans, and E-AWA, which extend
basic kmeans, Wkmeans [6], and AWA [13], respectively. In
addition, the convergence theorems of our proposed algorithms
are given. Extensive experiments on both synthetic and real-
life data sets corroborate the effectiveness of our proposed
methods. The desirable features of our algorithms can be
concluded as follows.

1) The generality of the extending algorithms encompasses
a unified framework that considers both the intracluster
compactness and the intercluster separation. Concretely,
we develop a new framework for kmeans-type algo-
rithms to include the impacts of the intracluster com-
pactness and the intercluster separation in the clustering
process.

2) The proposed framework is robust because it does
not introduce new parameters to balance the intra-
cluster compactness and the intercluster separation.
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The proposed algorithms are also more robust for the
input parameter which is used to tune the weights of
the features in comparison to the original kmeans-type
algorithms.

3) The extending algorithms are able to produce better
clustering results in comparison to the state-of-the-art
algorithms in most of cases since they can utilize
more information than traditional kmeans-type algo-
rithms such that our approaches have capability to
deliver discriminative powers of different features.

The main contributions of this paper are twofold:

1) we propose a new framework of kmeans-type algorithm
by combining the dispersions of the clusters which
reflect the compactness of the intracluster and the dis-
tances between the centroids of the clusters indicating
the separation between clusters;

2) we give the complete proof of convergence of the
extending algorithms based on the new framework.

The remaining sections of this paper are organized as
follows: a brief overview of related works on various kmeans-
type algorithms is presented in Section II. Section III
introduces the extensions of the kmeans-type algorithms.
Experiments on both synthetic and real data sets are pre-
sented in Section IV. We discuss the features of our algo-
rithms in Section V and conclude this paper in Section VI.

II. RELATED WORK

In this section, we give a brief survey of kmeans-type
clustering from three aspects: 1) no Wkmeans-type algorithms;
2) vector Wkmeans-type algorithms; and 3) matrix Wkmeans-
type algorithms. For detailed surveys of kmeans family algo-
rithms, readers may refer to [18] and [19].

A. No Wkmeans-Type Algorithm

Kmeans-type clustering algorithms aim at finding a partition
such that the sum of the squared distances between the
empirical means of the clusters and the objects in the clusters
is minimized.

1) No Wkmeans-Type Algorithm Without Intercluster
Separation: Let X = {X1, X2, . . . , Xn} be a set of n objects.
Object Xi = {xi1, xi2, . . . , xim} is characterized by a set
of m features (dimensions). The membership matrix U is a
n × k binary matrix, where uip = 1 indicates that object i is
allocated to cluster p, otherwise, it is not allocated to cluster p.
Z = {Z1, Z2, . . . , Zk} is a set of k vectors representing the
centroids of k clusters. The basic kmeans relies on minimizing
an objective function [6]

P(U, Z) =
k∑

p=1

n∑

i=1

m∑

j=1

uip(xi j − z pj )
2 (1)

subject to

uip ∈ {0, 1}. (2)

U and Z can be solved by optimizing the objective function.
The detailed process of optimization can be referred to [9].

Basic kmeans algorithm has been extended in many ways.
Steinbach et al. proposed a hierarchical divisive version of
kmeans, called bisecting kmeans [20], which recursively par-
titions objects into two clusters at each step until the number
of clusters is k. Bradley et al. [21] presented a fast scalable
and singlepass version of kmeans that does not require all
the data to be feed in the memory at the same time. Since
the kmeans-type algorithms are sensitive to the choice of
initial centroids and usually get stuck at local optima, many
methods [22], [23] are proposed to overcome this problem.
Another problem of kmeans algorithms is to require tuning
of parameter K . X-means [24] automatically finds K by
optimizing a criterion such as Akaike information criterion
(AIC) or Bayesian information criterion (BIC).

2) No Wkmeans-Type Algorithm With Intercluster
Separation: To obtain the best k (the number of clusters),
some validity indexes [25] which integrate both intracluster
compactness and intercluster separation are used in the
clustering process. Yang et al. [26] and Wu et al. [27]
proposed a fuzzy compactness and separation (FCS)
algorithms which calculates the distances between the
centroids of the cluster and the global centroids as the
intercluster separation. The promising results are obtained
since FCS is more robust to noises and outliers than traditional
fuzzy kmeans clustering.

B. Vector Wkmeans-Type Algorithm

A major problem of no Wkmeans-type algorithms lies
in treating all features equally in the clustering process. In
practice, an interesting clustering structure usually occurs in
a subspace defined by a subset of all the features. Therefore,
many studies attempt to weight features with various methods
[6], [28]–[31].

1) Vector Wkmeans-Type Algorithm Without Intercluster
Separation: Automated variable Wkmeans [6] is a typical vec-
tor weighting clustering algorithm, which can be formulated as

P(U, W, Z) =
k∑

p=1

n∑

i=1

uip

m∑

j=1

w
β
j (xi j − z pj )

2 (3)

subject to

uip ∈ {0, 1},
k∑

p=1

uip = 1,

m∑

j=1

w j = 1, 0 ≤ w j ≤ 1 (4)

where W is a weighting vector for the features. The details of
the solution for U , Z , and W are given in [6].

De Sarbo et al. first introduced a feature selection method,
SYNCLUS [28], which partitions features into several groups
and uses weights for feature groups in the clustering process.
The algorithm needs a large amount of computational cost [6].
It may not be applicable for large data sets. Inspired by the
idea of two-level weighting strategy [28], Chen et al. proposed
a two-level variable Wkmeans [15] based on Wkmeans [6].

2) Vector Wkmeans-Type Algorithm With Intercluster
Separation: De Soete [29], [30] proposed an approach to
optimize feature weights for ultrametric and additive tree
fitting. This approach calculates the distances between all pairs
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of objects and finds the optimal weight for each feature. How-
ever, this approach requires high-computational cost [6] since
the hierarchical clustering method used to solve the feature
selection problem in this approach needs high-computational
cost. To decrease the computational cost, Makarenkov and
Legendre [31] extended De Soete’s approach to optimize
feature weighting method for kmeans clustering. Usually, these
algorithms are able to gain promising results to the data sets
involving error-perturbed features or outliers.

C. Matrix Wkmeans-Type Algorithm

Matrix Wkmeans-type algorithms seek to group objects into
clusters in different subsets of features for different clusters.
It includes two tasks: 1) identification of the subsets of features
where clusters can be found and 2) discovery of the clusters
from different subsets of features.

1) Matrix Wkmeans-Type Algorithm Without Intercluster
Separation: Aggarwal et al. [10] proposed the PROjected
CLUStering (PROCLUS) algorithm which is able to find a
subset of features for each cluster. Using PROCLUS, a user,
however, needs to specify the average number of cluster fea-
tures. Different to PROCLUS, feature weighting has been stud-
ied extensively in recent years [3], [4], [13], [14], [32], [33].
Therein, AWA [13] is a typical matrix weighting clustering
algorithm, which can be formulated as

P(U, W, Z) =
k∑

p=1

n∑

i=1

uip

m∑

j=1

w
β
pj (xi j − z pj )

2 (5)

subject to

uip ∈ {0, 1},
k∑

p=1

uip = 1,

m∑

j=1

wpj = 1, 0 ≤ wpj ≤ 1 (6)

where W is a weighting matrix, each row in which denotes
a weight vector of the features in a cluster. The process of
minimizing the objective function to solve U , Z , and W can
be referred to [13].

Based on AWA [13], Jing et al. proposed an EWkmeans [4]
which minimizes the intracluster compactness and maximizes
the negative weight entropy to stimulate more features con-
tributing to the identification of a cluster. In a later study,
Chen et al. [14] proposed a two-level matrix Wkmeans algo-
rithm and Ahmad and Dey [34] developed a matrix kmeans-
type clustering algorithm of mixed numerical and categorical
data sets based on EWkmeans [4]. Domeniconi et al. [11], [35]
and Al-Razgan and Domeniconi [12] discovered clusters in
subspaces spanned by different combinations of features via
local weights of features. However, Jing et al. [4] pointed
out that the objective functions in their methods are not
differentiable while minimizing the objective functions.

2) Matrix Wkmeans-Type Algorithm With Intercluster
Separation: Friedman and Meulman [36] published the clus-
tering objects on subsets of features algorithm for matrix
weighting clustering which involves the calculation of the
distances between all pairs of objects at each iterative step.
This results in a high-computational complexity O(tn2m)
where n, m, and t is the number of objects, features, and

iterations, respectively. Combining the FCS method [27] and
EWKmeans [4], Deng et al. proposed an enhanced soft sub-
space clustering (ESSC) [3] algorithm that is able to use both
intracluster compactness and intercluster separation. ESSC is
able to effectively reduce the effect of the features on which
the centroids of the clusters are close to the global centroid.
However, negative values may be produced in the membership
matrix if the balancing parameter is large. In addition, ESSC
has three manual input parameters. In practice, it is difficult
to find a group of appropriate values for the parameters.

D. Characteristics of Our Extending Kmeans-Type
Algorithms

The main feature of our proposed framework lies in the
fusion of the information of intercluster separation in a
clustering process. At present, most traditional kmeans-type
algorithms (e.g., basic kmeans, Wkmeans [6], and AWA [13])
only utilize the intracluster compactness. On the contrary,
our proposed framework synthesizes both the intracluster
compactness and the intercluster separation.

On the other hand, some existing algorithms have also
introduced the intercluster separation into their models as we
mentioned in Sections II-A.2, II-B.2, and II-C.2. The schemes
of using the intercluster separation in these algorithms can
be summarized into two classes: 1) calculating the distances
between all pairs of objects which belong to different clusters
[29]–[31], [36] and 2) calculating the distance between the
centroid of each cluster and the global centroid [3], [26], [27].
Both schemes are able to help the algorithms improve the
clustering results. However, the objective functions involved
in the algorithms using the way of class 1 are not differen-
tiable [4]. A subtraction framework embedded in the objective
functions, which are differentiable in class 2, is usually used to
integrate the intercluster separation by the existing algorithms
[3], [26], [27]. However, a new parameter is usually required

in the subtraction framework to balance the intracluster com-
pactness and the intercluster separation. In practice, it is
difficult to seek an appropriate value for this parameter. In our
extending algorithms, to guarantee that the objective function
in our proposed framework is differentiable, we calculate
the distances between the centroids of the clusters with the
global centroid as the intercluster separation. Consequently, we
propose a division framework to integrate both the intracluster
compactness and the intercluster separation.

III. EXTENDING MODEL OF KMEANS-TYPE ALGORITHM

A. Motivation

From the analysis of the related works, most of existing
clustering methods consider only intracluster compactness.
Take the AWA [13] as an example, the weights of features are
updated according to the dispersions of the cluster. It means,
in the same cluster, the features of small dispersions must be
evaluated with big weights and the features of big dispersions
must be evaluated with small weights. However, this does not
work well in certain circumstances. For example, we have
three clusters: C1 (London Olympic game), C2 (London riots),
and C3 (Beijing Olympic game), as shown in Table I, each row
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TABLE I

EXAMPLE OF THREE CLUSTERS USED TO ILLUSTRATE OUR MOTIVATION

TABLE II

TERM FREQUENCIES OF THE EXAMPLE IN TABLE I

in which represents a document. The distribution of keyword
frequencies is shown in Table II. From the table we can see
that the dispersions of features are similar in all clusters.
The traditional Wkmeans will evaluate the similar weight to
each feature. But we can observe, comparing C1 with C2,
the features: Olympic, game, Blackberry, and riots, have
more discriminative capabilities. Comparing C1 with C3, the
features: London, England, Beijing, and China have more
discriminative capabilities. Thus, it may be ineffective to
evaluate the weights of the features using only the dispersions
of a data set. Under this condition, the intercluster separation
can play an important role in distinguishing the importance
of different features. In this paper, we focus on the extending
kmeans-type algorithms by integrating both the intracluster
compactness and the intercluster separation. Intuitively, it is
ideal to compare all the pairs of objects or centroids to
utilize the intercluster separation. In comparison with previous
Wkmeans methods (e.g., Wkmeans and AWA), we may have
a new objective function with the subtraction structure

P(U, W, Z) =
k∑

p=1

n∑

i=1

uip

k∑

q=1
q �=p

n∑

i ′=1

ui ′q

m∑

j=1

w
β
pq j Dii ′ pq j (7)

subject to
m∑

j=1

wpq j = 1 (8)

Dii ′ pq j = (xi j − z pj )
2 + (xi ′ j − zq j )

2 − η(xi j − xi ′ j )
2. (9)

This function aims to compare all pairs of objects in
different clusters. In this objective function, each cluster has
k − 1 weighting vectors, which represent the discriminative
capabilities of the features while comparing to the other
k − 1 clusters. However, it is not solvable for the membership
matrix U in this objective function. Instead of comparing to
each pair of objects, we compare each pair of centroids to
maximize the distances of different clusters in the objective
function with the subtraction structure

P(U, W, Z) =
k∑

p=1

k∑

q=1
q �=p

m∑

j=1

w
β
pq j

n∑

i=1

uip Dpq j (10)

Dpq j = (xi j − z pj )
2 − η(z pj − zq j )

2. (11)

Fig. 1. Illustrative example of the effect of intercluster separation (Z0 is
the global centroid and Z1, Z2 are the centroids of cluster 1, cluster 2,
respectively).

The membership matrix U can be solved in theory. How-
ever, it is difficult to seek an appropriate value for balancing
parameter η. Negative values in weight are often produced if
η is large. Different to functions (7) and (10), we may develop
another objective function

P(U, W, Z) =
k∑

p=1

k∑

q=1
q �=p

m∑

j=1

w
β
pq j

n∑

i=1

uip
(xi j − z pj )

2

(z pj − zq j )
2 . (12)

This function employs the division structure similar to LDA
[16], [17]. However, it is technically difficult to derive the
centroid matrix Z in (12).

To make the centroid Z and membership matrix U solvable
in the process of optimizing the objective functions, we can
use the distances between the centroids of the clusters and
the global centroid to approximate the distances of all pairs
of centroids in the objective function, as shown in (12). We
believe that this approximation is reasonable, because making
the centroid of a cluster away from the global centroid is
approximately equivalent to make the cluster away from the
other clusters in most of cases. For example, in Fig. 1,
making cluster 1 away from the global centroid Z0 is equal to
make cluster 1 away from cluster 2 to some extent. Thus,
it may attain the purpose of maximizing the distances of
the clusters. It is worth noting that our extending algorithms
try to maximize the distances between the centroids of the
clusters and the global centroid while keeping to minimize the
intracluster compactness which also has impact on the weight
assignment. Thus, the errors produced by the approximation
may be reduced. In addition, many existing algorithms [3],
[26], [27] maximize the intercluster separation by comparing
the centroids of the clusters and the global centroid. The
distances between the centroids of the clusters and the global
centroid are also widely used as the intercluster separation in
classification algorithms [16], [17], [37]. Under this frame-
work, in the following sections, we demonstrate the detailed
derivative process of three extending algorithms: 1) E-kmeans;
2) E-Wkmeans; and 3) E-AWA.

B. Extension of Basic Kmeans (E-Kmeans)

Basic kmeans is a typical clustering algorithm which has
been widely used in various data analysis. However, it con-
siders only the distances between centroids and objects, i.e.,
intracluster compactness. To utilize intercluster separation, we
introduce the global centroid of a data set. Different to the
basic kmeans, our proposed algorithm, E-kmeans, is expected
to minimize the distances between objects and the centroid of
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the cluster that the objects belong to, while maximizing the
distances between centroids of clusters and the global centroid.

To integrate intracluster compactness and intercluster sep-
aration, we modify the objective function, as shown in (1),
into

P(U, Z) =
k∑

p=1

n∑

i=1

uip

m∑

j=1

(xi j − z pj )
2

(z pj − z0 j )
2 (13)

subject to

uip ∈ {0, 1},
k∑

p=1

uip = 1. (14)

z0 j is the j th feature of the global centroid z0 of a data set.
We calculate z0 j as

z0 j =

n∑
i=1

xi j

n
. (15)

We can minimize (13) by iteratively solving the following
two problems.

1) Problem P1: fix Z = Ẑ , and solve the reduced problem
P(U, Ẑ ).

2) Problem P2: fix U = Û , and solve the reduced problem
P(Û , Z).

The problem P1 is solved by

uip =
⎧
⎨

⎩
1, if

m∑
j=1

(xi j −z pj )
2

(z pj−z0 j )
2 ≤

m∑
j=1

(xi j −z p′ j )
2

(z p′ j −z0 j )
2

0, otherwise
(16)

where 1 ≤ p′ ≤ k, p′ �= p. If (z pj − z0 j )
2 = 0, we remove the

j th feature at this iteration while calculating the membership
U and the value of the objective function P(U, Z). The proof
procedure of minimizing objective function, as shown in (13),
to solve U is given in [9]. The solution to problem P2 is given
by the following theorem.

Theorem 3.1: Let U = Û be fixed, P2 is minimized iff

z pj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z0 j , if
n∑

i=1
uip(xi j − z0 j ) = 0

n∑
i=1

uip(xi j −z0 j )xi j

n∑
i=1

uip(xi j −z0 j )
, otherwise.

(17)

Proof: For minimizing objective function (13), we derive
the gradient of z p, j as

∂ P(Û , Z)

∂z pj
=

n∑

i=1

uip
z pj (xi j − z0 j ) − xi j (xi j − z0 j )

(z pj − z0 j )
3 . (18)

If z pj − z0 j �= 0, we set (18) to zero, we have

z pj =

n∑
i=1

uip(xi j − z0 j )xi j

n∑
i=1

uip(xi j − z0 j )

. (19)

If
∑n

i=1 uip(xi j − z0 j ) = 0, we set z pj = z0 j . The overall
procedure of E-kmeans can be described as Algorithm 1.
It is noted that, since the objective function shown in (13) is

Algorithm 1 E-kmeans
Input: X = {X1, X2, . . . , Xn}, k.
Output: U , Z .
Initialize: Randomly choose an initial Z0 = Z1, Z2, . . . , Zk .
repeat

Fixed Z , solve the membership matrix U with (16);
Fixed U , solve the centroids Z with (17);

until Convergence.

strictly decreasing, when we optimize U and Z , Algorithm 1
can guarantee that the objective function converges to local
minimum.

C. Extension of Wkmeans (E-Wkmeans)

As mentioned before, basic kmeans and E-kmeans treat all
the features equally. However, features may have different
discriminative powers in real-world applications. Motivated
by this, Huang et al. proposed the Wkmeans [6] algorithm
which evaluates the importance of the features according to
the dispersions of a data set. In this section, we propose the
E-Wkmeans algorithm, which is able to consider the disper-
sions of a data set and the distances between the centroids
of the clusters and the global centroid simultaneously while
updating the feature weights.

Let W = {w1, w2, . . . , wm} be the weights for m features
and β be a parameter for tuning weight w j , we extend (3) into

P(U, W, Z) =
k∑

p=1

n∑

i=1

uip

⎡

⎣
m∑

j=1

w
β
j
(xi j − z pj )

2

(z pj − z0 j )
2

⎤

⎦ (20)

subject to

uip ∈ {0, 1},
k∑

p=1

uip = 1,

m∑

j=1

w j = 1, 0 ≤ w j ≤ 1. (21)

Similar to solve (13), we can minimize (20) by iteratively
solving the following three problems.

1) Problem P1: fix Z = Ẑ and W = Ŵ , and solve the
reduced problem P(U, Ẑ , Ŵ ).

2) Problem P2: fix U = Û and W = Ŵ , and solve the
reduced problem P(Û , Z , Ŵ ).

3) Problem P3: fix U = Û and Z = Ẑ , and solve the
reduced problem P(Û , Ẑ , W ).

Problem P1 is solved by

uip =

⎧
⎪⎨

⎪⎩

1, if
m∑

j=1
w

β
j

(xi j −z pj )
2

(z pj−z0 j )
2 ≤

m∑
j=1

w
β
j

(xi j −z p′ j )
2

(z p′ j −z0 j )
2

0, otherwise

(22)

where 1 ≤ p′ ≤ k, p′ �= p. Problem P2 is solved by (17)
and the solution to problem P3 is given in the following
Theorem 3.2.

Theorem 3.2: Let U = Û and Z = Ẑ be fixed, P(Û , Ẑ , W )
is minimized iff

w j =

⎧
⎪⎨

⎪⎩

0, D j = 0 or z pj = z0 j

1
m∑

t=1

( D j
Dt

)1/(β−1) , otherwise (23)



1438 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 8, AUGUST 2014

Algorithm 2 E-Wkmeans
Input: X = {X1, X2, . . . , Xn},k.
Output: U , Z , W .
Initialize: Randomly choose an initial Z0 = Z1, Z2, . . . , Zk and
weight W = {w1, w2, . . . , wm}.
repeat

Fixed Z , W , solve the membership matrix U with (22);
Fixed U , W , solve the centroids Z with (17);
Fixed U , Z , solve the weight W with (23);

until Convergence.

where

D j =
k∑

p=1

n∑

i=1

uip
(xi j − z pj )

2

(z pj − z0 j )
2 . (24)

Proof: We consider the relaxed minimization of
P(Û , Ẑ , W ) via a Lagrange multiplier obtained by ignoring
the constraint

∑m
j=1 w j = 1. Let α be the multiplier and

�(W, α) be the Lagrangian

�(W, α) =
m∑

j=1

w
β
j D j − α

⎛

⎝
m∑

j=1

w j − 1

⎞

⎠ . (25)

By setting the gradient of the function (25) with respects to
w j and α to zero, we obtain the equations

∂�(W, α)

∂w j
= βw

β−1
j D j − α = 0 (26)

∂�(W, α)

∂α
=

m∑

j=1

w j − 1 = 0. (27)

From (26), we obtain

w j =
(

α

β D j

)1/(β−1)

. (28)

Substituting (28) into (27), we have

α1/(β−1) = 1

/⎡

⎣
m∑

j=1

(
1

β D j

)1/(β−1)
⎤

⎦. (29)

Substituting (29) into (28), we have

w j = 1
m∑

t=1

(
D j
Dt

)1/(β−1)
. (30)

The overall procedure of E-Wkmeans can be described as
Algorithm 2. Given a data partition, the goal of feature weight
aims to assign a larger weight to a feature that has a smaller
intracluster compactness and larger intercluster separation.
The parameter β are used to control the distribution of the
weight W .

When β = 0, E-Wkmeans is equivalent to E-kmeans,
because w

β
j = 1 regardless of the value of w j .

When β = 1, w j is equal to 1 for the smallest D j shown
in (24), and the weights of other feature is 0. That means, it
chooses only one feature for clustering. It is unreasonable for
the high-dimensional data clustering.

When 0 < β < 1, the objective function (20) cannot
converge to the minimization.

When β < 0, the larger the value of D j is, the larger value
of w j we can get. This is not applicable to feature selection.
The aim of feature selection is to evaluate bigger weights to
smaller D j , i.e., we should evaluate bigger weights to the
features that have small intracluster compactness and large
intercluster separation. β < 0 cannot satisfy the demand of
feature selection.

When β > 1, the larger the value of D j is, the smaller
value of w j we can get. This is able to satisfy all the demand
of the algorithms and the objective function shown in (20) is
strictly decreasing when we optimize U , Z , and W , it is able
to converge to local minimum.

D. Extension of AWA (E-AWA)

In Wkmeans and E-Wkmeans, the same feature in different
clusters has the same weight. The same feature in different
clusters, however, has different weights in most real-world
applications. In this subsection, we focus on developing an
algorithm to solve this problem under the condition of utilizing
both intracluster compactness and intercluster separation.

Let W = {W1, W2, . . . , Wk} be a weight matrix for
k clusters. Wp = {wp1, wp2, . . . , wpm} denotes the feature
weights in cluster p, we extend (5) into

P(U, W, Z) =
k∑

p=1

n∑

i=1

uip

⎡

⎣
m∑

j=1

w
β
pj

(xi j − z pj )
2

(z pj − z0 j )
2

⎤

⎦ (31)

subject to

uip ∈ {0, 1},
k∑

p=1

uip = 1,

m∑

j=1

wpj = 1, 0 ≤ wpj ≤ 1. (32)

Similar to solve (13), we can minimize (20) by iteratively
solving the following three problems.

1) Problem P1: fix Z = Ẑ and W = Ŵ , and solve the
reduced problem P(U, Ẑ , Ŵ ).

2) Problem P2: fix U = Û and W = Ŵ , and solve the
reduced problem P(Û , Z , Ŵ ).

3) Problem P3: fix U = Û and Z = Ẑ , and solve the
reduced problem P(Û , Ẑ , W ).

Problem P1 is solved by

uip =

⎧
⎪⎨

⎪⎩

1, if
m∑

j=1
w

β
pj

(xi j −z pj )
2

(z pj−z0 j )
2 ≤

m∑
j=1

w
β
p′ j

(xi j −z p′ j )
2

(z p′ j −z0 j )
2

0, otherwise

(33)

where 1 ≤ p′ ≤ k, p′ �= p. Problem P2 is solved by (17) and
the problem P3 is solved by

wpj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if (z pj − z0 j )
2 = 0

1
mi

, if Dpj = 0 and z pj �= z0 j

mi = |{t : Dpt = 0 and (z pt − z0t )
2 �= 0}|

0, if Dpj �= 0, but Dpt = 0, for some t

1
m∑

t=1

( Dpj
Dpt

)1/(β−1) ∀1 ≤ t ≤ m, otherwise

(34)
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Algorithm 3 E-AWA
Input: X = {X1, X2, . . . , Xn},k.
Output: U , Z , W .
Initialize: Randomly choose an initial Z0 = Z1, Z2, . . . , Zk and
weight W = {wpj }.
repeat

Fixed Z , W , solve the membership matrix U with (33);
Fixed U , W solve the centroids Z with (17);
Fixed U , Z solve the weight W with (34);

until Convergence.

where

Dpj =
n∑

i=1

uip
(xi j − z pj )

2

(z pj − z0 j )
2 . (35)

The convergence of proof process is similar to that of
E-Wkmeans. The procedure of E-AWA can be described as
Algorithm 3. Similar to the E-Wkmeans, the input parameter
β is used to control the distribution of the weight W and β
should be evaluated the value greater than 1. Since objective
function is strictly decreasing in each step when optimizing
U, Z , and W, Algorithm 3 can assure that the objective
function converges to local minimum.

E. Relationship Amidst Algorithms

E-kmeans, E-Wkmeans, and E-AWA are the extensions
of basic kmeans, Wkmeans, and AWA, respectively. Basic
kmeans, Wkmeans, and AWA employ only the intraclus-
ter compactness while updating the membership matrix and
weights. However, the extending algorithms take the interclus-
ter separation into account.

From another perspective, E-kmeans does not weight the
features, i.e., all the features are treated equally. E-Wkmeans
weights the features with a vector, which means, each feature
has a weight representing the importance of the feature in the
entire data set. E-AWA weights the features with a matrix, i.e.,
each cluster has a weighting vector representing the subspace
of the cluster. When β = 0, E-Wkmeans and Wkmeans
degenerate to E-kmeans and basic kmeans, respectively. Since
β = 0, w

β
j = 1 regardless of the value of w j . Thus, the

features are treated equally while updating the membership
matrix U . Likewise, when β = 0, E-AWA and AWA degen-
erate to the basic kmeans and E-kmeans. When β = 0,
E-Wkmeans and E-AWA have the same clustering result,
whilst Wkmean and AWA have the same clustering result.
When the weights of the same feature in different clusters are
equal, E-AWA and AWA are equivalent to E-Wkmeans and
Wkmeans, respectively. However, this case rarely happens in
real-world data sets.

F. Computational Complexity

Similar to the basic kmeans, Wkmean, and AWA, the
extending algorithms are also iterative algorithms. The com-
putational complexity of basic kmeans is O(tknm), where t is
the iterative times; k, n, and m are the number of the clusters,
objects and features, respectively. E-kmeans as well as basic

kmeans has two computational steps: 1) updating the member-
ship matrix and 2) updating the centroids. The complexities
of updating centroids and updating membership matrix of
E-kmeans are O(knm + nm) and O(knm + km), respectively.
Therefore, the complexity of the overall E-kmeans algorithm
is O(tknm).

In comparison to the E-kmeans, the E-Wkmeans and
E-AWA have another step: updating the weights. The com-
plexity of updating the weights of E-Wkmeans and E-AWA is
O(knm+km). Therefore, the overall computational complexi-
ties of E-Wkmean and E-AWA are also O(tknm). In summary,
compared with the original algorithms, our extending algo-
rithms need extra O(km) computational time to calculate the
distances between the centroids of the clusters and the global
centroid while updating member matrix and weights, and we
need extra O(nm) to calculate distances between the objects
and the global centroid to update the centroids of the clusters.
However, it does not change the computational complexities of
the algorithms in overall. Basic kmeans, E-kmeans, Wkmeans,
E-kmeans, AWA, and E-AWA have the same computational
complexity O(tknm).

IV. EXPERIMENTS

A. Experimental Setup

In experiments, the performances of proposed approaches
are extensively evaluated on two synthetic data sets and nine
real-life data sets. The benchmark clustering algorithms—
basic kmeans (kmeans), BiSecting kmeans (BSkmeans) [20],
automated variable Wkmeans [6], AWA [13], EWkmeans [4]
as well as ESSC [3] are chosen for the performance compar-
ison with the proposed algorithms. Among these algorithms,
kmeans, E-kmeans, and BSkmeans have no input parameter;
Wkmeans, AWA, E-Wkmeans, and E-AWA have a parameter
β to tune the weights of the features. In our experiments, we
choose β = 8 according to the empirical study of parameter
β in Sections IV-B.1 and IV-C.1. EWkmeans has parameter γ,
which controls the strength of the incentive for clustering on
more features. In the experiments, we set γ = 5 according
to [4]. ESSC has three parameters λ, γ, and η, where λ is
the fuzzy index of fuzzy membership, γ and η are used to
control the influences of entropy and balance the weights
between intracluster compactness and intercluster separation,
respectively. We have chosen the empirical values λ = 1.2,
γ = 5, and η = 0.1 according to [3]. Since ESSC [3] is a fuzzy
kmeans algorithms and each object corresponds to a member-
ship vector which indicates the degree that the object belongs
to the corresponding clusters, we assign the object to the
cluster corresponding to the maximal value in the membership
vector for simplification to compare the performance. In the
experiments, we implement all the algorithms with MATLAB
and run the algorithms in a workstation with Intel(R)Xeon(R)
2.4 Hz CPU, 8 GB RAM.

In this paper, four evaluation metrics including accuracy
(Acc), RandIndex (RI), Fscore, and normal mutual information
(NMI) are used to evaluate the results of the algorithms. Acc
represents the percentage of the objects that are correctly
recovered in a clustering result and RI [3], [6] considers the
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percentage of the pairs of objects which cluster correctly. The
computational processes of Acc and RI can be referred in [6].
Fscore [4] is able to leverage the information of precision and
recall. NMI [3], [4] is a popular measure of clustering quality,
which is more reliable to measure the imbalanced data sets
(i.e., most of objects are from one cluster and only a few
objects belong to other clusters) in comparison to the other
three metrics. The computational processes of Fscore and NMI
can be referred to [4].

It is well known that the kmeans-type clustering process
produces local optimal solution. The final result depends
on the locations of initial cluster centroids. In Wkmeans
clustering algorithms, the initial weights also affect the final
clustering result. To compare the performance between the
extending algorithms and the existing algorithms, the same set
of centroids which randomly generated are used to initialize
the different algorithms and all the weighting algorithms are
initialized with the same weights. Finally, we calculate the
average Acc, RI, Fscore, and NMI produced by the algorithms
after running 100 times.

B. Synthetic Data Set

In this subsection, two synthetic data sets are constructed
to investigate the performances of the proposed algorithms. To
validate the effect of intercluster separation, different features
on the two data sets are designed to different discriminative
capabilities on an intercluster perspective. The centroids and
standard deviations of synthetic data sets are given in Table III.
Each cluster contains eight features and 100 objects. The
synthetic data sets are generated by three steps.

1) Generating the centroid for each cluster. For making dif-
ferent features have different discriminative capabilities
from an intercluster separation perspective, we generate
three 8-D vectors as the centroids of synthetic data
set 1 (Synthetic 1) where the first three features are
well separated and the other features are very close to
each other when comparing cluster 1 with cluster 2.
However, comparing cluster 1 with cluster 3, the second
three features are well separated and the other features
are close to each other. The last two features are noisy
features as they are very close to each other for all
the clusters. The generating procedure of the centroids
of the synthetic data set 2 (Synthetic 2) is similar
to that of Synthetic 1. Synthetic 2 has five clusters.
Based on the centroids of Synthetic 1, we generate
another two 6-D vectors as the first six features of the
centroids of the last two clusters. The values of the
first three, the fourth, the fifth, and the sixth features
of the centroids of cluster 4 are similar to the values
of the corresponding features of centroids of cluster 2,
3, 3, and 2, respectively. The values of the first two,
the second two, the fifth, and the sixth features of the
centroids of cluster 5 are similar to the values of the
corresponding features of centroids of cluster 3, 2, 3,
and 1, respectively. Then, we generate five 2-D vectors
as the centroids of the last two features of the five
clusters.

TABLE III

CENTROIDS AND THE STANDARD DEVIATIONS OF SYNTHETIC DATA SETS

Fig. 2. Effects with various β on synthetic data sets. (a) Synthetic 1.
(b) Synthetic 2.

2) Generating the standard deviations for each cluster. For
the Synthetic 1, we generate randomly an 8-D vector of
which the values are between 0 and 1 as the standard
deviations for each cluster. For the Synthetic 2, we
generate randomly an 8-D vector of which the values
are between 0 and 0.3 as the standard deviations for
each cluster. Because, we want to observe the effect of
our proposed algorithms applying to the data sets which
have different separability. Normally, the data sets with
small standard deviations are separated easier than the
data sets with large the standard deviations under the
condition of similar centroids.

3) Generating the objects of the data sets. We generate 100
points for each cluster using normal distribution with
the centroids derived by the first step and the standard
deviations derived the second step.

1) Parametric Study: Parameter β, which is used in the
algorithms: Wkmeans, E-Wkmeans, AWA, and E-AWA, is an
important factor to tune the weights of the features. In this
subsection, we give the empirical study of β for its effects on
the results, as shown in Fig. 2. The clustering results are shown
from β = 1.1 until the results do not change or begin to reduce
by increasing the value of β. We have used the increment of
the value of 0.2 for β in this scope in our experiments because
the performance is sensitive to the change of the values of
β in the range of (1, 2]. From the value of β = 2, we have used
the increment of the value of 0.5 for β since the performances
are more stable in this range.

Fig. 2 shows the changing trend of the average results
produced by the compared algorithms after running 100 times
on the two synthetic data sets. From the results, we can
observe that the performances of the extending algorithms,
E-AWA and E-Wkmeans, are consistently better than AWA
and Wkmeans, respectively, across all the evaluation metrics.
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TABLE IV

RESULTS ON SYNTHETIC DATA SETS (THE STANDARD DEVIATION

IN BRACKET)

AWA and E-AWA perform better than Wkmeans and
E-Wkmeans. E-AWA performs best in all the algorithms on
both data sets. We can also observe that the performances tend
to be constant when β is greater than three. Since the relatively
good results can be obtained when β = 8, in the later study,
we choose β = 8 in the experiments.

2) Results and Analysis: The average Acc, RI, Fscore,
NMI, and the standard deviations produced by the compared
algorithms after running 100 times are summarized in Table IV
for the two synthetic data sets by using β = 8. In view of
the overall experiment, the best performance is delivered by
E-AWA with respects to all the evaluation criteria. In addition,
E-Wkmeans and E-kmeans perform better than Wkmeans and
basic kmeans, respectively.

For Synthetic 1, we observe from Table IV that the per-
formances of the E-AWA, E-Wkmeans, and E-kmeans are
better than that of AWA, Wkmeans, and kmeans, respectively.
In comparison to kmeans, Wkmeans, and AWA and E-kmeans,
E-Wkmeans, and E-AWA are able to deliver over 25%,
26%, and 9% Acc improvement, respectively, on Synthetic 1.
In the three pairs of algorithms (basic kmeans and E-kmeans,
Wkmeans and E-Wkmeans, and AWA and E-AWA), AWA and
E-AWA perform the best. We believe that this is caused by
the same features in different clusters playing different roles
in the data set. For example, feature 1 in cluster 2 plays more
important than that in cluster 1 and cluster 3, because the
dispersion of feature 1 in cluster 2 is small and the centroid
of feature 1 in cluster 2 is far from the global centroid. ESSC
is the second best algorithm for this data set. This result
indicates that ESSC is able to utilize effectively the intercluster
separation as our extending algorithms do.

In comparison to Synthetic 1 and Synthetic 2 is a more
complex data set. We can observe the results of the Syn-
thetic 2 in the Table IV that the performances of the E-AWA,
E-Wkmeans, and E-kmeans also perform better than AWA,
Wkmeans, and kmeans, respectively. Compared with kmeans,
Wkmeans, and AWA and E-kmeans, E-Wkmeans, and E-AWA
produces 11%, 15%, and 7% Acc improvement, respectively.
Likewise, the AWA and E-AWA perform the best in three pairs
of algorithms, even better than the result of Synthetic 1. The
result of Synthetic 2 implies that AWA and E-AWA are more

Fig. 3. Comparison of the feature weights on Synthetic 1 (β = 8).

Fig. 4. Comparison of the feature weights on Synthetic 2 (β = 8).

applicable to the complex data set. The performance of ESSC
in Synthetic 2 is not as promising as that in Synthetic 1. We
believe that ESSC may perform worse for a complex data
set due to the presence of a number of parameters which
are difficult to select for a better performance. We can see
the Table IV, the standard deviations of the results produced
by the extending algorithms are similar to that produced by
the original algorithms. In overall, the results produced by
the algorithms of no input parameter have smaller standard
deviations than that produced by the algorithms with one or
more parameters.

In summary, our proposed algorithms, E-AWA,
E-Wkmeans, and E-kmeans perform better than the original
kmeans-type approaches, AWA, Wkmeans, and kmeans,
respectively, on the synthetic data sets. We believe that this
performance gain is contributed to consider the intercluster
separation in the clustering process.

3) Feature Selection: In this subsection, we study the effect
of feature weight with different kmeans-type algorithms. In a
clustering process, both Wkmeans and E-Wkmeans produce
a weight for each feature, which represents the contribution
of this feature in the entire data set. Figs. 3 and 4 show the
comparison of feature weights of Wkmeans and E-Wkmeans
on two synthetic data sets. From the Table III, we can observe
that the centroids of feature 7 and feature 8 in all the clusters
are very close to each other. Therefore, we can consider
feature 7 and feature 8 as noisy features from the viewpoint
of intercluster separation. From Figs. 3 and 4, we observe
that E-Wkmeans can reduce the weight of noisy features
(i.e., feature 7 and feature 8) and increase the weights of
features which are relatively far away from each other as
opposed to Wkmeans.

On the other hand, both E-AWA and AWA produce a
weight for each feature in each cluster, which represents the
contribution of a feature in a cluster. From Figs. 5 and 6,
we observe that E-AWA can also reduce the weight of noisy
features (i.e., feature 7 and feature 8) and increase the weights
of the features which are far from the centroid of other clusters.
For example, feature 3 of cluster 1 in Synthetic 1, this feature
has small dispersion and is far away from the centroid of
other clusters. E-AWA is able to increase the weight of this
feature in a significant rate comparing to AWA. And for
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Fig. 5. Comparison of the feature weights on Synthetic 1 (β = 8).

Fig. 6. Comparison of the feature weights on Synthetic 2 (β = 8).

TABLE V

AVERAGE ITERATIONS AND THE RUNNING TIME

ON SYNTHETIC DATA SETS

feature 8 of cluster 5 in Synthetic 2, the AWA evaluates the
big weight due to the small dispersion. As a matter of fact,
this feature has small discriminative capability because the
mean of this feature in all the clusters are similar. E-AWA
reduces the weight of this feature in cluster 5 comparing to
AWA. From the analysis of the synthetic data sets, we can
see that the more appropriate weights of the features can
be obtained by integrating the information of the intercluster
separation. It is worth noting that the weights of features
are influenced simultaneously by parameter β, the intracluster
compactness and the intercluster separation. For Wkmeans,
AWA, E-Wkmeans, and E-AWA, the variance of the weights
of the different features will reduce with the increase of the
values of β, i.e., when β is large, the weights of different
features will tend to be similar.

4) Convergence Speed: In this paper, we import the inter-
cluster separation into the objection functions of kmeans-type
algorithms. Intuitively, the factor from intercluster separation
may speed up the convergence process of the clustering. In
this subsection, we investigate the convergence speed of the
Wkmeans-type algorithms with respects to the iterations and
the running time. The stopping criterion of the algorithms
relies on the condition that the membership matrix U is no
longer changing. Table V lists the average iterations and the
running time of the algorithms initialized by the same cen-
troids in 100 runs with β = 8. From this table, we can observe
that the iterations of the extending algorithms are similar
to those of the corresponding original algorithms. However,
the extending algorithms spend slightly more running time in
comparison to the original algorithms. This additional time
cost comes from the calculation of the distances between
the centroids of the clusters and the global centroid at every
iteration.

TABLE VI

PROPERTIES OF REAL-LIFE DATA SETS

C. Real-Life Data Set

To further investigate the performance of the extending algo-
rithms in real-life data sets, we have evaluated our algorithms
in nine data sets reported in Machine Learning Repository
(http://archive.ics.uci.edu/ml/). The properties of these data
sets are described in Table VI.

1) Parametric Study: We show the average Acc, RI, Fscore,
and NMI produced by Wkmeans, E-Wkmeans, AWA, and
E-AWA after running 100 times from β = 1.1 until the clus-
tering results do not change or begin to reduce by increasing
the value of β, as shown in Fig. 7. From this figure, we can
observe that E-AWA and E-Wkmeans outperform AWA and
Wkmeans, respectively, for most values of β across the data
sets Vertebral 2, Vertebral 3, Robot, Cloud, LandsatSatellite,
Glass, and Parkinson. The algorithms, AWA and E-AWA,
perform better than Wkmeans and E-Wkmeans, respectively,
on data sets Vertebral 2, Vertebral 3, Cloud, LandsatSatellite,
and Parkinson. On Robot and Glass, E-Wkmeans outperform
the other algorithms. We can observe that the results of most
algorithms are unstable when the values of β is between
1 and 3 and trend to stability after the value of β is greater
than 3. This observation is similar to the results of the synthetic
data sets. Moreover, we can observe that the performances
of our extending algorithms are more stable than the perfor-
mances of the original algorithms with the change of the values
of β in most of data sets, especially, when 1 < β ≤ 3. This
indicates that the intracluster separation can help to improve
clustering results no matter what value β is assigned when it
is greater than 1 in most of cases.

However, we can see that Wkmeans performs better than
E-Wkmeans on data set Wine. Likewise, AWA achieves better
results than E-AWA on data set WDBC. We believe that
performance degradation on Wine and WDBC may be caused
by the resulting errors in the process of approximation when
we use the distances between the centroids of the clusters
and the global centroid to approximate the distances among
all pairs of centroids. When the centroid of a cluster on all
the features or some important features are very close to the
corresponding features of the global centroid, but the centroids
of the clusters on these features are not close to each other,
the approximation may introduce errors. For example, we can
observe from Table VII, the values of the centroids on the
sixth, seventh, eighth, and 12th features in the second clusters
are very close to the values of the corresponding features in
the global centroid. Thus, the small weights will be assigned
to these features. However, the distances among the centroids
of the clusters on these features are not very close to each
other and the dispersions of the data set on these features are



HUANG et al.: EXTENSIONS OF KMEANS-TYPE ALGORITHMS 1443

Fig. 7. Effects with various β on real data sets. (a) Wine. (b) WDBC.
(c) Vertebral 2. (d) Vertebral 3. (e) Robot. (f) Cloud. (g) LandsatSatellite.
(h) Glass. (i) Parkinson.

small, which indicates that these features should be assigned
by big weights. Thus, it may produce the errors when assigning
the objects into the second clusters. It is noteworthy that
our extending algorithms have also included the intracluster

TABLE VII

CHARACTERISTICS OF DATA SET WINE

compactness. It is able to minimize the distances between
the centroid of a cluster and the objects that belong to the
cluster such that the weight assignment can be accomplished
in a principled manner. Thus, the problem caused by the
approximation process may be relieved to some extent. From
the experimental results, our proposed algorithms outperform
the original algorithms in most of cases.

2) Results and Analysis: The average Acc, RI, Fscore, NMI,
and standard deviations produced by the compared algorithms
after running 100 times are summarized in Table VIII on nine
real-life data sets by using β = 8 according to the study
of Section IV-C.1. On the data sets Robot and Cloud, the
extending algorithms: E-kmeans, E-Wkmeans, and E-AWA,
outperform kmeans, Wkmeans, and AWA, respectively, across
all the evaluation metrics. For example, comparing with AWA,
E-AWA obtains 15% and 7% Acc improvement on Robot
and Cloud, respectively. Compared with kmeans, Wkmeans,
and AWA and E-kmeans, E-Wkmeans, and E-AWA achieve
6%, 24%, and 7% NMI improvement on data set Glass and
7%, 6%, and 5% NMI improvement on data set Parkinson,
respectively. However, it is noticed that the best clustering
performance as indicated by NMI, is not always consistent
with that indicated by Acc, RI, and Fscore. This is caused
by the imbalanced properties of Glass and Parkinson. Both of
two data sets include two clusters. The numbers of objects in
two clusters are 163 and 51, respectively, in Glass. And the
numbers of objects in two clusters are 47 and 147, respectively,
in Parkinson. Under an extreme condition, if all the objects
are assigned to the same cluster, we can obtain high values
of Acc, RI, and Fscore, but NMI is 0. Therefore, NMI is a
more reliable metric for the imbalanced data sets. For data
sets Vertebral 2 and Vertebral 3, our extending algorithms
achieve comparable results with the original algorithms when
β = 8. The best results on the two data sets are gained by
using 1 < β < 3 from the study of parameter β in Fig. 7
of Section IV-C.1. When β = 1.9, E-AWA is able to obtain
0.7739 and 0.6539 Acc on Vertebral 2 and Vertebral 3, respec-
tively. These results are significantly better than the results
produced by other algorithms. For data set LandsatSatellite,
E-AWA achieves 12% Acc, 5% RI, 11% Fscore, and 9% NMI
improvement compared with AWA. For data set Wine, E-AWA
and E-Kmeans obtain 1% to 3% Acc, RI, Fscore, and NMI
improvement compared with AWA and kmeans. Moreover,
from Table VIII, we can see that the results produced by our
extending algorithms have slightly bigger standard deviations
than that produced by the original algorithms. This may sug-
gest that the algorithms which consider twofold factors, i.e.,
intercluster compactness and intercluster separation, may have
relatively lower stability than the algorithms which consider
only one factor.
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TABLE VIII

RESULTS ON REAL-LIFE DATA SETS (THE STANDARD DEVIATION IN BRACKET)

TABLE IX

FREQUENCIES THAT THE EXTENDING ALGORITHMS PRODUCE BETTER

RESULTS THAN THE ORIGINAL ALGORITHMS INITIALIZED

BY THE SAME CENTROIDS IN 100 RUNS

Table IX shows the number of running times that the
extending algorithms produce better results than the original
algorithms initialized by the same centroids in 100 runs. Due
to the imbalanced property of data sets Glass and Parkinson,
we show the comparative results on metric NMI for the two
data sets. We can see from Table IX that the extending algo-
rithms can produce better results than the original algorithms
in most of cases, if we initialize the algorithms with the same
centroids. It is worth noting that Wkmeans produces more
times of better results than E-Wkmeans on Cloud. However,
from the Table VIII, the results produced by Wkmeans have
larger standard deviations, i.e., partial results produced by
Wkmeans are inferior. Moreover, the average results produced
by E-Wkmeans are better than those produced by Wkmeans on
Cloud. It is also noteworthy that Wkmeans significantly out-
performs E-Wkmeans on data set Wine. That may be caused
by the resulting errors when we use the distances between the
centroids of the clusters and the global centroid to approximate
the distances among all pairs of centroids. We give a detailed
analysis in Section IV-C.1. In summary, E-AWA, E-Wkmeans,

TABLE X

AVERAGE ITERATIONS AND THE RUNNING TIME

ON REAL-LIFE DATA SETS

and E-kmeans are able to obtain performance improvement
by maximizing the intercluster separation in contrast to the
original algorithms in most of cases. Table IX suggests that our
extending algorithms have high possibilities to obtain better
results in comparison to the original algorithms with the same
initial centroids.

3) Convergence Speed: In this subsection, we study the
effect of the intercluster separation on the convergence speed
of Wkmeans-type algorithms on real-life data sets with
respects to the iterations and the running time. Table X lists
the average iterations and the running time of the algorithms
initialized by the same centroids in 100 runs with β = 8 on
the real data sets. From this table, we can observe that the
iteration of E-Wkmeans is slightly less than that of Wkmeans
in most of the data sets. We can also see from the table that
the extending algorithms spend slightly more running time
as opposed to the original algorithms under the condition of
similar or less iterations on some data sets. This is caused
by the extra computational cost that the extending algorithms
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must spend to calculate the distances between the centroids
of the clusters and the global centroid at every iteration. For
LandsatSatellite, the iterations of E-AWA, E-Wkmeans, and
E-kmeans reduce 26%, 60%, and 70% in comparison to those
of AWA, Wkmeans, and kmeans, respectively. Correspond-
ingly, the running time of E-AWA, E-Wkmeans, and E-kmeans
reduces 4.2%, 45%, and 59% as opposed to those of AWA,
Wkmeans, and kmeans on LandsatSatellite, respectively.

V. DISCUSSION

From the results in Section IV, E-AWA, E-Wkmeans, and
E-kmeans outperform AWA, Wkmeans, and kmeans, respec-
tively, in terms of various evaluation measures: Acc, RI,
Fscore, and NMI in most of cases. Therein, AWA performs
better than kmeans and Wkmeans, and E-AWA performs better
than E-kmeans and E-Wkmeans in most of data sets. That
suggests the information of the intercluster separation can
help to improve the clustering results by maximizing the
distances among the clusters. E-AWA performs the best in
all the compared algorithms. Due to the parameter problem,
ESSC does not perform well in comparison to our proposed
algorithms in most of cases.

According to the comparison of the weights of the features,
the extending algorithms can reduce the weights of the fea-
tures, the centroids of which are very close to each other, and
increase the weight of the features, the centroids of which are
far away from each other. Therefore, our extending algorithms
can effectively improve the performance of feature weighting
such that they perform well for clustering.

In contrast to ESSC, the extending algorithms utilize only
one parameter β as used in Wkmeans and AWA. Thus,
our algorithms are more applicable for complex data sets
in practice. We can observe from the experiments that the
performances of E-AWA and E-Wkmeans are more smooth
than those of AWA and Wkmeans, respectively, with various
values of β, especially, when 1 < β < 3. Therefore,
our proposed algorithms are more robust than the original
algorithms in overall.

The extending algorithms have the same computational
complexities compared with basic kmeans algorithms. Since
clustering using kmeans-type algorithm is an iterative process,
the computational time also depends on the total number of
iterations. From the empirical study, we can observe that the
total number of iterations of the extending algorithms is similar
to or less than that of the original algorithms. However, the
extending algorithms must spend extra time to calculate the
distances between the centroids of the clusters and the global
centroid at each iteration. The extending algorithms may spend
slightly more time in comparison to the original algorithms on
some data sets.

From the experiments and analysis, we can find that our
proposed algorithms have a limitation: when the centroid of
certain cluster is very close to the global centroid and the
centroids among the clusters are not close to each other,
maximizing the distances between the centroids of clusters in
place of maximizing the distances among the clusters may pro-
duce errors and the performances of our extending algorithms

may decrease to some extent. However, since our extending
algorithms consider both the intracluster compactness and the
intercluster separation, our extending algorithms are able to
obtain better results in comparison to the original algorithms
in most of cases. It is also worth pointing out that the current
extending algorithms are difficult to apply for categorical data
sets. This is caused by the possibility that the denominators
of the objective functions become zeros, i.e., division-by-zero
problem.

VI. CONCLUSION

In this paper, we have presented three extensions of kmeans-
type algorithms by integrating both intracluster compactness
and intercluster separation. This paper involves the following
aspects: 1) three new objective functions are proposed based
on basic kmeans, Wkmeans, and AWA; 2) the corresponding
updating rules are derived and the convergence is proved in
theory; and 3) extensive experiments are carried out to evaluate
the performances of E-kmeans, E-Wkmeans, and E-AWA algo-
rithms based on four evaluation metrics: Acc, RI, Fscore, and
NMI. The results demonstrate that the extending algorithms
are more effective than the existing algorithms. In particular,
E-AWA delivers the best performance in comparison to other
algorithms in most of cases.

In the future work, we plan to further extend our algorithms
to categorical data sets by developing new objective functions
to overcome the division-by-zero problem. It will be of great
importance in applying our algorithms to more real data sets.
We also plan to investigate the potential of our proposed
algorithms for other applications, such as gene data clustering,
image clustering, community discovery, and so on.
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